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“Here on the level sand,

Between the sea and land,

What shall I build or write

Against the fall of night?

Tell me of runes to grave

That hold the bursting wave,

Or bastions to design

For longer date than mine."

— G. H. Hardy

A Mathematician’s Apology
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1
I N T R O D U C T I O N

In nature, we often come across examples of a wide range of natural phenomena ranging

from microscopic to macroscopic length-scales that fall under the category of non-equilibrium

phenomena. Biological processes such as cell growth [1], movement of micro-tubular motor

proteins [2], growth of bacterial colonies [3], besides physical phenomena like moving traffic

[4], turbulent fluid flow [5] fall under the broad category of non-equilibrium processes. Such

systems constantly gain (lose) energy from (to) an external driving medium and are inher-

ently out of equilibrium. Absence of equilibrium generically implies presence of a system-

wide flux that might or might not be constant in space and time. For example, a chemical

potential or thermal gradient across any two points in a system can give rise to particle

or heat currents respectively. If the gradient varies in space and time, then the current will

in general be a function of space and time. Many of these systems are known to attain a

steady state in the long-time limit (i.e. a state with a time-invariant measure) — subject to

a constant drive by an external field, these states are termed as "non-equilibrium steady

states" (NESS) that carry a net current that remains stationary in space and time. Descrip-

tion of such systems is beyond the ambits of the Gibbs-Boltzmann framework, and much

of their properties might be strikingly different from that of their equilibrium counterparts.

A sub-class of non-equilibrium systems where each component of the system exhibits a cer-

tain degree of randomness in addition to being driven by an external field, are regarded

as "driven diffusive systems" [6]. Till date, there exists no framework for the description of

such non-equilibrium steady states that might be comparable in its generality to the Gibbs-

Boltzmann framework for equilibrium systems. To understand the wealth of surprisingly

different phenomena often exhibited by non-equilibrium systems that are impossible to ob-

serve for systems in equilibrium, one must take recourse to simple model systems that might

provide insights into non-equilibrium behaviours.

In description of driven diffusive systems it is often useful to describe the system as an

assembly of more than one interacting components. It often turns out that apart from the

influence of an external driving field, the nature of coupling between the components might

crucially affect the behaviour of the whole system. Examples of such coupled driven systems
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can be found aplenty in several physical and biological contexts — the advection of a passive

scalar by a fluid flow [7], motion of directed polymers in a random medium [8] are few of the

many examples of coupled driven systems. The coupling might, in some cases be of a uni-

directional nature in the sense that the evolution of one of the components strongly affects

the other while the other being passively advected in the flow field of the former — smoke

particles dispersed in air can be cited as one of the examples of one-way coupled systems [9].

In other situations, the coupling is bi-directional where both the species strongly affect the

time-evolution of one another. Let us consider an example in a biological setting. Proteins

and lipids on the membrane of a living cell are found to cluster, advected by fluctuations of

the actin cytoskeleton [10–12]. A recent model considers these membrane components to be

advected passively, in which case the clusters are not stable, and reorganize constantly [13].

However, there is experimental evidence that the membrane components also act back on

the actin [14, 15]. The resulting two-way coupling has the potential to affect the qualitative

nature of clustering. There are ample instances of large-scale organisation of varying features

taking place among one or all of the coupled species in the system depending on the nature

of coupling. Hence, the combination of an external driving field and the coupling between

different components in a system can indeed give rise to macroscopic clustering properties.

However, the coupling may also drive the system towards a homogeneous, disordered state

with no long-ranged correlations in the system [16–18].

In this thesis we explore a both-way coupled non-equilibrium lattice gas model which

shows a novel phase diagram of several ordered phases along with a disordered regime on

tuning the coupling parameter between the different components of the system. Depending

on the form and strength of the two-way coupling, clusters may be stable, compact objects

or dynamical entities which keep forming and disintegrating on a rapid time scale, or there

might be no clustering at all and the coupling can give rise to a disordered, homogeneous

state. A recently developed formalism of non-linear fluctuating hydrodynamics has proven

to be useful in studying the dynamics of such coupled, disordered phases [18, 19]. We have

carried out an extensive characterisation of the static and dynamic aspects of all the ordered

and disordered phases obtained on varying the coupling parameters in our model system

using numerical simulations and analytical techniques. Hereafter, this chapter will consist of

a brief review of the earlier works that have been done in characterising phase separation in

coupled systems along with the discussion of an analytical framework of non-linear fluctu-

ating hydrodynamics that has been developed over the past few years to study disordered

phases in coupled systems. The chapter ends with a synopsis of our main results which shall

be elaborated in the chapters to follow.
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1.1 phase separation in coupled systems

Although equilibrium systems exhibit no phase transitions in one dimension, there are quite

a lot of instances where driven, noisy systems show phase transition even in one dimension.

For example, an asymmetric exclusion process (ASEP) with open boundaries shows phase

transition by tuning the boundary injection and ejection rates [20]. Even in absence of any

boundary effects, driven diffusive models show phase separation induced by defects that

give rise to density inhomogeneities in the system [21]. In this section we intend to focus on

earlier studies of yet another kind of phase separation exhibited by driven systems with two

or more coupled species on tuning the coupling parameters in the system.

Let us consider the example of particles suspended in a solvent. If the density of the par-

ticles is larger than that of the solvent, then the particles will eventually settle down at the

bottom of the fluid and form a sediment. The process of sedimentation strongly depends on

the viscosity of the fluid and stochastic thermal fluctuations. Also, as the particle density is

increased, the many-body hydrodynamic interactions can significantly affect the sedimenta-

tion as well. An experiment conducted with steel balls moving through Turpentine oil [22,

23] showed that any initial layer of particles distributed uniformly will form clusters as they

drift through a viscous fluid. In the context of modelling the sedimentation of a colloidal

crystal, continuum and lattice gas versions of a model was proposed by Lahiri et. al. [24,

25] that describes a set of particles performing a biased diffusive motion under gravity on a

fluctuating landscape. The discrete version of the model can be thought of as two coupled

sub-lattices consisting of density field of the particles and the height gradient field of the

landscape. The dynamics of the coupled particle-landscape system is such that the particles

tend to move towards the local minimum of the landscape and in doing so, affect the shape

of the landscape further.

It was shown that for a broad parameter regime, the system reaches a completely phase

separated state where the landscape shapes itself into a deep valley that holds all the particles

together in a single cluster as shown in Fig. 1.1. It was further shown that for particular choice

of densities and rates, such steady states satisfied the Gibbs-Boltzmann measure in terms of

a Hamiltonian that involved long-ranged interactions in spite of the dynamics being local. It

was also argued that even for other choice of system parameters for which the exact steady

state measure could not be found, the system would nevertheless exhibit phase separation

in the long time limit. The class of phase separation so obtained was named as "Strong Phase

Separation" (SPS) because of certain thermodynamic properties which shall be elaborated in

the subsequent chapters. A similar class of steady states were also reported in another lattice

gas model also known as the ABC model comprising of three different types of hardcore

particles (A,B and C) perform biased hopping on a periodic chain with rates dependent on
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Figure 1.1: Typical configuration of a system in SPS phase

the nearest neighbour [26]. At each time step a bond is chosen randomly, and if the particles

across the bond are dissimilar, they are exchanged according to the following rates:

W(AB⇔ BA) = W(BC ⇔ CB) = W(CA⇔ AC) = q

W(BA⇔ AB) = W(CB⇔ BC) = W(AC ⇔ CA) = 1 (1.1)

It was argued that complete phase separation between all the three species of particles will

be obtained as long as densities of each of the species is non-zero. A generalised matrix

product ansatz was employed to study the steady-state correlations of the system and for a

particular limit where densities of all the species were equal, detailed balance was shown to

hold. The study was also extended to a general case of m different species of particles with

the steady state being characterised by a complete phase separation of each species.

Another qualitatively different kind of phase separation was reported in [27]. The model

is similar in setting to that described in LR model, but in this case the evolution of the sys-

tem is semi-autonomous — while the particles followed the local gradients of the landscape

and preferentially settled at the local minima of the landscape, the landscape itself has an

independent dynamics which remains unaffected by the particles. This is the case of pas-

sive scalar advection where the particles are advected by an autonomously evolving field

underneath. When the particles obey hardcore constraint, the particles show a special kind

of clustering where strong fluctuations are always present [27, 28]. Although the two-point

density correlation function for the particles in the steady state is a scaling function of r/L

[29], it shows a cusp singularity as opposed to the linear decay expected for usual phase-

ordering systems. This is known as fluctuation dominated phase ordering (FDPO). We show

a schematic diagram for a typical configuration of a system in the FDPO state in Fig. 1.2.

Recently, a coupled model of two types of particles embedded in a two-dimensional ac-

tive medium was proposed [13] in the context of studying actomyosin-dependent phase

segregation of protein molecules on cellular surfaces. Experimental studies have shown that
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Figure 1.2: Typical configuration of a system in the FDPO phase. The dark patches represent particle
clusters and the lighter patches indicate empty stretches of landscape.

actomyosins generate active stochastic stresses on the cell membrane, thus driving cluster-

ing of several membrane components [10–12]. The model in [13] considers two types of

particles, passive and inert — while the passive particles (un)bind to the active filaments in

the medium, the inert particles remain unaffected by the medium. On tuning the density of

the filaments and also the active noise strength, a phase segregation of the passive molecules

from the inert molecules was found. Further, it was shown that the phase segregated states

showed giant fluctuations in order parameter and domain size, characteristic of FDPO [27, 30,

31]. However, in several biological systems it has been also observed that certain membrane

proteins are capable of inducing actin-polymerisation at their binding sites and thereby cause

local membrane protrusions [32, 33]. While the polymerisation and adhesion of the proteins

at the binding sites drive them towards a clustered state, these clusters in turn cause linear

instability that changes the membrane shape.

The problem of semi-autonomously evolving coupled systems has recently been extended

to the realms of active matter in [34, 35]. In [34] a model of active membrane with particle-

like inclusions has been introduced. The presence of particles stimulate the growth of the

underlying membrane such that the rates of local membrane fluctuations are directly pro-

portional to the local particle occupancies. On the other hand, the particles themselves show

a tendency to cluster in the local minima of the membrane. It was shown that the coupling

between the active elements and the interface dynamics drives a microphase segregation

among the particles and generates ripple-like structures on the membrane. It was further

shown that the scaling behaviour of an actively growing interface does not fall in the Kardar-

Parisi-Zhang class of growing interfaces [36]. Another very recent work by the same authors

[35] studies the limit of a single active particle on an Edward-Wilkinson type interface [37].
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1.2 framework for non-linear fluctuating hydrodynamics and mode-coupling

theory

While coupling between the constituent components might drive macroscopic clustering in

several systems as elaborated in the previous section, it might also lead to homogeneous,

translationally invariant density profiles with no long-ranged correlations. We discuss a re-

cently developed formalism of non-linear fluctuating hydrodynamics (NLFH) along with

mode-coupling theory that can be incorporated to study the large-scale dynamical proper-

ties of systems with several coupled, conserved components that show no long-ranged order.

A recent surge of activity in this field has led to new insights into the spatio-temporal scaling

properties of several coupled fields {ρα}, whose dynamical evolution involves couplings be-

tween the fields both at the linear and non-linear levels that result in propagating kinematic

waves of fluctuations in the fields. The modes can be decoupled at the linear level by finding

the correct linear combinations of ρα’s that yield the modes which propagate independently

as kinematic waves. One can obtain the speeds λα of the propagating waves by diagonalis-

ing matrix of couplings which are in general different for all the modes. By a Galilean shift

of λα, one may move to the rest frame of the αth mode. The other modes, of course, are

not stationary in this frame and may contribute to the dissipation of αth mode as they are

non-linearly coupled to it. The correlation function between the eigenmodes φα are given by

Cαα = 〈φα(0, 0)φα(x, t)〉 and are expected to satisfy the following scaling ansatz,

Cαα(x, t) ∼ t−1/zα fα

(
x− λαt

t1/zα

)
(1.2)

where zα is the dynamical exponent for the αth mode and fα is the scaling function. A perti-

nent question to ask is whether the value of zα is same or different for all the modes. Recently

it has been proposed that a non-linear extension of fluctuating hydrodynamics along with

mode-coupling theory can yield comprehensive understanding of dynamical exponents that

govern the dissipation of these modes along with the corresponding scaling functions. Non-

linear fluctuating hydrodynamics (NLFH) has emerged as a universal tool to analyze gen-

eral one-dimensional systems such Hamiltonian dynamics [38, 39], anharmonic chains [19,

40, 41], or driven diffusive systems [42, 43]. The theory is robust in the sense that it works

for systems with generic dynamics — Hamiltonian, quantum, stochastic, with the restriction

of being translationally invariant and the interactions being sufficiently short-ranged. The

only essential ingredients for carrying out the formalism is the knowledge of the locally con-

served currents Jα associated with each conserved field α. In this section we briefly outline

the formalism of NLFH along with mode-coupling theory that has been developed over the

past few years to study a system of n conserved fields.
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The starting point for investigating the large-scale dynamical properties of a system with

n conserved components is the continuity equation,

∂~ρ(x, t)
∂t

+
∂~J(x, t)

∂x
= 0 (1.3)

where ~ρ(x, t) and ~J(x, t) are n-dimensional vectors whose components ρα(x, t) and Jα(x, t)

denote local density of the α-th conserved quantity and associated conserved current, re-

spectively, with α = 1, 2, ..., n. Assumption of local equilibrium ensures that the current does

not have any explicit space-time dependence, but depends on space and time only through

its dependence on local densities. Using this Eq. 1.3 can be rewritten as,

∂~ρ

∂t
+ A

∂~ρ

∂x
= 0 (1.4)

where A denotes the Jacobian with elements Aαβ = ∂Jα

∂ρβ
. Expanding the local density ρα(x, t)

around its conserved global value ρ0
α, one can write ρα(x, t) = ρ0

α + uα(x, t). Retention of

linear terms in the small perturbation uα(x, t) yields a set of coupled linear partial differential

equations that can be solved by diagonalizing A0 whose elements are functions of {ρ0
α}. The

normal modes ~φ = R−1~u follow the equations ∂tφα(x, t) + λα∂xφα(x, t) = 0 where λα’s are

eigenvalues of A0. Therefore the normal modes satisfy travelling wave solutions φα(x− λαt)

and λα can be interpreted as the speed of propagation of local perturbations in the system.

Beyond the linear theory, one expands the current ~J around the stationary density values,

and retains quadratic non-linearities in ~u. This gives rise to coupling between the modes φα

in the quadratic order. The time-evolution equation for φα(x, t) then becomes,

∂tφα = −∂x[λαφα + ~φTGα~φ− ∂x(D~φ)α + (B~ξ)α] (1.5)

where a phemenological diffusion term and a noise term has been added [44]. The Gaussian

white noise has the strength 〈ξα(x, t)ξα(x′, t′)〉 = Bααδ(x− x′)δ(t− t′) and the matrix B can

be assumed to be diagonal without any loss of generality. The mode-coupling matrices are

defined as,

Gα =
1
2 ∑

γ

R−1
αγ RTHγR (1.6)

where the Hessian matrix Hγ
αβ = ∂2 Jγ/∂ρ0

α∂ρ0
β. With an exact knowledge of the current-

density relationship, the elements of the mode-coupling matrices can be evaluated. The el-

ement Gα
ββ denotes the coupling between the α-th and β-th mode. It is easy to see from Eq.

1.5 that the off-diagonal terms of Gα do not influence the time-evolution of φα. The traveling

wave solution predicted from linear theory does not remain valid anymore for Eq. 1.5 and
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apart from moving through the system with speed λα, any local perturbation in φα would

also dissipate with time, due to its coupling with other modes, and also due to diffusion.

The formalism of non-linear fluctuating hydrodynamics allows us to understand the long

time decay of these local fluctuations.

An useful quantity to study how local perturbations in the system decay in the limit of

large space and time, is the dynamical structure function Cαα(x, t) = 〈φα(0, 0)φα(x, t)〉. Start-

ing from Eq. 1.5 the time-evolution of Cαα(x, t), or equivalently the mode-coupling equation

can be constructed and the scaling ansatz 1.2 can be made [45]. Here, fα(y) is the scaling

function and the scaling variable y = (x− λαt)/t1/zα indicates that at time t the perturbation

is peaked around the position x(t) = x(0)− λαt and the width of the peak scales as t1/zα .

It is assumed that the spreading is sub-ballistic, i.e. zα > 1. In the case when each of the

eigenvalues of the matrix A0 are different, the modes also propagate with different speeds,

which means that the cross-correlation between two modes Cαβ(x, t) = 〈φα(0, 0)φβ(x, t)〉 can

be neglected at large times.

Taking Fourier transform in space Eq. 1.2 gives C̃αα(k, t) ∼ e−iλαkt f̃α(kt1/zα), and subse-

quent Laplace transform in time changes the scaling variable to ζα = (ω + iλαk)|k|−zα and

the dynamical structure function can be written as,

Ĉαα(k, ζα) =
1√
2π
|k|−zα hα(ζα). (1.7)

This ansatz can be used to solve the mode coupling equation and the scaling function comes

out to be [45],

1
hα(ζα)

= lim
k→0

[
ζα + Dα|k|2−zα + Qααζ

1
zα
−1

α |k|3−2zα + ∑
β 6=α

Qαβ(−iλαβ
k )

1
zβ
−1
|k|

1+ 1
zβ
−zα

]
(1.8)

with coefficient Qαβ proportional to (Gα
ββ)

2 and λ
αβ
k = (λα − λβ)sgn(k). In order to have

a non-trivial scaling limit, we must ensure that in the limit of small k the scaling function

hα(ζα) stays finite and hα(ζα) 6= 1/ζα. Note that hα(ζα) = 1/ζα would mean dissipationless

transport of density perturbation as predicted from the linear theory. We briefly discuss

below how these two criteria determine the value of the dynamical exponent zα and the

form of the scaling function.

Case A: When all diagonal terms of Gα vanish, Gα
ββ = 0 ∀β, then last two terms on the

right hand side of Eq. 1.8 drop out. The resulting scaling function will be non-trivial only if

zα = 2, which gives hα(ζα) = [ζα + Dα]−1. This corresponds to,

C̃αα(k, t) =
1√
2π

e−iλαkt−Dαk2t (1.9)
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This gives a diffusive universality class for the mode α. In absence of self-coupling and cross-

coupling between the modes, any local perturbation moves around the system with speed

λα and dissipates diffusively.

Case B: In case Gα
αα = 0, but there is at least one β for which Gα

ββ 6= 0, then Eq. 1.8 becomes,

1
hα(ζα)

= lim
k→0

[
ζα + Dα|k|2−zα + ∑

β 6=α

Qαβ(−iλαβ
k )

1
zβ
−1
|k|

1+ 1
zβ
−zα

]
(1.10)

Now, we have already assumed that zα > 1, and hence 1 + 1
zβ
− zα < 2− zα which means

in the limit of small k the second term in the rhs of Eq. 1.10 vanishes faster and the scaling

behavior is dominated by the slowest decaying term in the summation present in the third

term i.e. zα = 1 + 1
zβ

max . Note that this result is consistent with the assumption that zα > 1.

The dynamic structure function in momentum space in this case,

C̃αα(k, t) =
1√
2π

exp

−iλαkt− ∑
β∈{zβ=zmax

β }
Qαβ(−iλαβ

k )1/zmax
β −1|k|1+1/zmax

β t

 (1.11)

Eq. 1.11 shows the long time decay of the local fluctuations when mode α has cross-coupling

with other modes but has no self-coupling term.

Case C: Finally, we consider the most general case of non-vanishing self-coupling and

cross-coupling, Gα
αα 6= 0 and Gα

αβ 6= 0 for at least one β 6= α. In this case all four terms on

the right hand side of Eq. 1.8 are present. Depending on which term dominates the small k

behavior, we can have either zα = 2, or zα = 3/2, or zα = 1 + 1/zmax
β . Thus we can rule out

the possibility of zα > 2 even in the presence of self-coupling. Moreover, in order to make

sure that the right hand side of Eq. 1.8 does not diverge in the limit of small k, we must have

non-negative exponents of k in the diffusive term, self-coupling term and cross-coupling

term. This is possible only if zα = min[2, 3/2, 1 + 1/zmax
β ] = 3/2. The corresponding scaling

function can be of two different types. If mode α is not cross-coupled to any diffusive mode,

i.e. zmax
β < 2, then only the self-coupling term dominates the small k behavior and the scaling

function is given by,

hα(ζα) = [ζα + Qααζ
− 1

3
α ]−1. (1.12)

This is known as the usual KPZ universality class [46]. However, if zmax
β = 2, then the cross-

coupling term also affects the scaling function and we have ,

hα(ζα) = [ζα + Qααζ
− 1

3
α + ∑

β∈{zβ=2}
Qαβ(−iλαβ

k )−
1
2 ]−1 (1.13)
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which is known as modified KPZ universality class [40]. This is a distinctly different univer-

sality class and can not be described by Prähofer-Spohn scaling function.

1.3 motivation and focus of thesis

In this thesis, we study a particle-landscape model similar in its setting to that of [24, 25]

where there are two sets of particles (heavy and light) moving stochastically on a fluctuating

landscape. The heavy (H) particles show a tendency to cluster towards the local potential

minima present in the landscape, while the lighter (L) particles tend to rise up. While doing

so, the H and L particles modify the shape of the landscape differently. By tuning the cou-

pling parameters that govern the action of the H and L particles on the landscape, we obtain

a phase diagram that shows two new kinds of ordered phases in both particle species and

also the landscape, along with the earlier found SPS and FDPO phases, and a disordered

phase. The phase diagram remains qualitatively valid in both one and two dimensions. We

characterise the static and dynamic properties of the ordered phases and observe that the

newly found phases are completely different in nature from the earlier examples of coupling-

induced phase separation [47–49]. This indicates that the difference in nature of coupling

alone can give rise to significantly different ordered states with rich static and dynamical

properties. Moreover, it might also crucially change the time-scales of coarsening to such

ordered phases.

Additionally, our model shows a disordered phase for a broad parameter regime that

we characterise. In this phase, neither the particles nor the landscape show long-ranged

order. Nevertheless, there are short-ranged correlations present in the steady state, whose

exact forms are unknown. The coupling between the particles and the landscape gives rise

to wave-like propagating modes of fluctuations which are coupled at the non-linear level.

Using the recently developed formalism of non-linear fluctuating hydrodynamics (NLFH)

along with mode-coupling theory that has been discussed in Sec 1.2, we study the dynamical

properties of the disordered phase observed in our model. In our work, we aim at carrying

the out the NLFH formalism starting from an approximate knowledge of the steady state,

and numerically verify the catalogue of universality classes predicted by mode coupling

theory for our model. However, we argue that in verifying the predictions through numerical

simulations, the conclusions can be masked by finite size effects.

1.4 synopsis of main results and plan of thesis

In this section we present the brief summaries of each of the chapters of this thesis. Chapter

2 gives an overview of the phase diagram that reveals novel phases on tuning the particle-
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landscape couplings. Chapters 3, 4, and 5 focus on the static and dynamic characterisation

of the ordered phases in one and two dimensions. Chapter 6 is based on our work on the

disordered phase that has been studied using the NLFH framework described in Sec. 1.2.

1.4.1 Chapter 2: Summary

In Chapter 2, we first introduce our model of a set of sliding particles on a fluctuating

landscape and discuss a phase diagram which is obtained on tuning the particle-landscape

couplings. We use a simple linear stability analysis to obtain a condition of having phase sep-

aration in the system. The model shows three different well-ordered phases: strong phase

separation (SPS), infinitesimal current with phase separation (IPS) and finite current with

phase separation (FPS). In all three phases, the H and L particles undergo complete phase

separation; the phases differ from each other in the nature of the ordering exhibited by the

landscape. In addition, there are two other phases, one of which is disordered with short-

ranged correlations while the other shows fluctuation-dominated phase ordering (FDPO)

[27]. The new ordered phases found here are quintessentially nonequilibrium; the phase sep-

arated states exhibit qualitatively different types of ordering for the particles and landscape,

quite unlike systems known earlier. In particular, particles display strong phase separation

[24] characterized by pure, fluctuationless phases, which cohabit with three macroscopic re-

gions of the surface, two of which possess long-range order, while the third does not. These

findings differ markedly from the strongly phase separated states found earlier in the LR and

ABC models [24, 26] and imply strong changes for both static and dynamical properties.

1.4.2 Chapter 3: Summary

In Chapter 3, we discuss our results on the static characterisation of the ordered phases

shown by the phase diagram. SPS (Strong phase separation) occurs when the H particles

impart a downward push to the landscape, while the L particles impart an upward push.

This results in a complete phase separation between the H and L particles, and between

the positive and negative height gradient regions of the landscape as well. This is the phase

studied in the Lahiri-Ramaswamy model of sedimenting colloidal crystals [24] that has been

mentioned briefly in Sec. 1.1. The pure domains of positive and negative slope form a deep

∨-shaped valley holding the H-cluster, while its mirror image ∧ holds the L-cluster. We show

that the entire parameter regime marked by SPS shows logarithmically slow coarsening in

time due to formation of metastable states in course of relaxation. In [25] it was shown that

with some conditions on the rates, the steady state measure is given by a Boltzmann fac-

tor involving a long-ranged Hamiltonian for particular choice of densities. In Chapter 3, we
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show that this can now generalized to the case of an arbitrary densities of the H particles,

for which the form of the Hamiltonian is derived. Further, by rescaling rates downward by

a factor proportional to the system size, a mean field calculation points to a finite tempera-

ture phase transition from a disordered phase to one with long range order. This result is

supported by numerical simulations of the model.

A completely new kind of phase separation IPS (Infinitesimal current with Phase Separa-

tion) is obtained when the H particles tend to push the landscape downward, while the L

particles do not impart any local bias to the landscape dynamics. In the steady state, the H

and L species undergo complete phase separation as in the SPS phase. However, unlike SPS,

the landscape is long-range ordered only in the region that holds the H-cluster, where it

forms a deep valley consisting of macroscopic pure domains of positive and negative slope

regions. The remaining part of the landscape beneath the L-cluster is not ordered and as-

sumes a rough shape. Notably, the approach to this steady state is rapid, with a coarsening

time that grows as a power law of size, as opposed to the much slower time-scales diverging

exponentially with system size that were found earlier [24, 26]. Further, in steady state, there

is a current of macroscopic tilt (slope) variables through the system with periodic boundary

conditions. A suitable mapping shows that this movement is well described as a SEP (sym-

metric exclusion process) with input and exit of particles at the two ends of the L-region

[50, 51]. The value of this current scales inversely with the system size N, implying that for

large system size, the entire system falls downward at an infinitesimal rate. This accounts for

the earlier nomenclature (Infinitesimal fall with phase separation) used for this phase [47].

Using the Kolmogorov loop condition [52] for equilibrium, we demonstrate the breakdown

of detailed balance in this case. A rescaling of the rates with the system size shows that there

is a possibility of having a phase transition in the IPS phase as well. Further, it is shown that

a single H particle in a system of (N− 1) particles of type L, leads to a non-trivial landscape

profile and a current of order 1/N. Next, the tendency of particles to cluster is demonstrated

by considering a system of two H particles and calculating the energy as a function of separa-

tion, in the adiabatic limit of vanishingly small rates for particle movement. Finally, detailed

numerical evidence is gathered in support of the description of the landscape in the L region

as a SEP with boundary injection.

FPS (Finite current with phase separation) sets in when both H and L particles push the

landscape downwards, but the latter at a lower rate than the former. As in the IPS phase, the

H and L species segregate into pure phases and the landscape forms a macroscopic valley

holding the H cluster while the part beneath the L cluster is disordered. However, unlike

the IPS phase, the two arms of the macroscopic valley now have a slope of magnitude less

than unity, corresponding to a finite fraction of both tilt species being present in both the

arms. The entire system carries a finite current of tilts in the steady state, resulting in a net

downward motion with finite velocity. The movement of microscopic tilts in the L-region
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resembles the movement of particles and holes in the well-known ASEP (asymmetric simple

exclusion process), with boundary injection [20]. The fact that the steady state tilt current

must be uniform across regions, allows us, at the level of mean field theory, to relate the

slopes of the arms in the H region to the tilt current in the L region. This value of the

slope is shown to be close to that obtained by numerical simulations. Further, the argued-

for correspondence of the surface in the L region and the ASEP is tested by numerical

simulations. Results conform surprisingly well with the maximal current phase of the ASEP,

including for instance the power laws which characterize the density profiles near the edges.

1.4.3 Chapter 4: Summary

Chapter 4 focusses on the dynamic properties of the phases highlighting the basic point that

the different types of ordering of the landscape result in very different dependence of time-

scales on the system size N. In the SPS phase, motion of the interface between the coexisting

phases involve an ’ergodic’ time-scale, growing exponentially with N, so that there is no

perceptible large-scale movement of rearrangement of the landscape on shorter timescales.

By contrast, in the IPS and FPS phases, the coexistence of ordered and disordered landscape

phases gives rise to novel steady state dynamics both near the interfaces and close to the

bottom of the large valley, on time-scales which grow algebraically with N. To characterize

this dynamics, we propose a scaling ansatz and show that our simulation data for various

dynamical correlation functions can indeed be described well by this ansatz. We also estimate

different scaling exponents that summarize the scaling behavior of each correlation function

considered here. In [48] it was noted that the properties of the landscape in the L-region has

certain similarities with open systems. We examine this issue further and show that there is

a quantitative matching between the dynamics of the landscape in the L-region with that of

an open-chain symmetric (asymmetric) exclusion process for the IPS (FPS) phase.

1.4.4 Chapter 5: Summary

The phase diagram discussed in Chapter 2 remains qualitatively same in two dimensions as

well. In Chapter 5, we present our study of our model in two dimensions for two different

types of lattice geometries. For a square lattice, in the ordered phases, the landscape orga-

nizes itself in algebraic time to form a valley with a diamond-shaped cross section, which

supports the H -cluster. However, there is an interesting finite-size effect, which gives rise

to a different topology of the landscape for smaller systems. Instead of a deep valley with

a single minimum, the landscape develops a line of minima and assumes the shape of a

trench. Using a scaling argument, we show that in the thermodynamic limit, such configura-
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tions are energetically unfavorable in comparison to the diamond-shaped single valley. For

a triangular lattice we encounter similar kind of finite size effects where we find three dif-

ferent kinds of topologies — hexagonal, trench, and triangular. However, we argue that the

energy scaling argument fails to work at high densities because of strong finite size effects

and boundary contributions. In Chapter 5 we also explore the steady state dynamics on a

two dimensional square lattice.

1.4.5 Chapter 6: Summary

Chapter 6 focusses on the disordered phase. Specifically, we are interested in how the cou-

pled time-evolution of particle density and landscape height gradient gives rise to different

dynamical universality classes in the system, following the prescription of NLFH described

in Sec. 1.2. However, unlike most NLFH studies so far, the exact steady state measure is

not known for our system. Although, in the disordered phase neither the particles nor the

landscape show any long ranged order, there are still short-ranged correlations present in

the system whose exact form is not known. Therefore, in this case we rely on approximate

expressions based on mean-field theory where we neglect all correlations in the system or

a slightly improved approximation where we retain some nearest neighbor or next nearest

neighbor correlations and ignore the rest. Using this approximate expression for current we

carry out the analysis of NLFH and derive the condition for observing different dynamical

universality classes. Finally, we check our analytical predictions with numerical simulations.

Our study shows that our system has rich dynamics in the disordered phase. Starting from

approximate expressions of the currents, mode coupling theory along with NLFH predicts

the possibility of having diffusive, KPZ, 3/2-Lévy, 5/3-Lévy, and golden mean universal-

ity classes in our system. However, we argue that not all of them are possible to observe

numerically as our observations are severely plagued by finite size effects. To the best of

our knowledge, this is the first ever study where NLFH has been used in absence of exact

knowledge of current-density relationship.
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2
P H A S E D I A G R A M F O R A C O U P L E D N O N - E Q U I L I B R I U M S Y S T E M

O F PA RT I C L E S O N A F L U C T U AT I N G L A N D S C A P E

2.1 introduction

In this chapter, we derive the phase diagram obtained by tuning the coupling strength be-

tween the components of a coupled non-equilibrium system. The system here can be sim-

plistically described as to consist of two sets of particles performing damped motion under

gravity on a fluctuating landscape. The model allows one to tune the interaction between

the landscape and the particles. In the process, novel non-equilibrium phases of particles

with compact clustering and rich, rapid dynamics coexisting with a macroscopically orga-

nized landscape is unmasked. The model has partial overlap with the lattice gas model of

Lahiri and Ramaswamy (LR) for sedimenting colloidal crystals [24, 25]. Although one of

the ordered phases was reported earlier in the context of the LR model, the other phases

manifest themselves outside the LR regime. In this chapter we derive the phase diagram and

summarily discuss the broad static and dynamic features of each of the phases. The results

presented here constitute a brief, qualitative overview of results reported in [47–49], while

the detailed discussions on the same are to follow in the subsequent chapters of this thesis.

2.2 model description

The model consists of two coupled driven diffusive systems, with conserved quantities. This

is a lattice model of H (heavier) and L (lighter) particles performing damped motion under

gravity on a fluctuating surface, thus justifying the name LH (Light-Heavy) model. The

model is very similar in its setting to the LR model [24, 25]. The system is modelled on a

periodic lattice of size N. Each of the lattice sites can accommodate atmost one heavy (H)

or one light (L) particle, while each of the lattice bonds representing the discrete surface

elements can have an orientation or ’tilt’ of ±π/4. The occupancy of the ith lattice site is

denoted by σi which assumes value 1(0) for an H (L) particle, while the tilt of the ith bond

is given by τi+1/2 which takes value (+1)(−1) according as the bond being an up (down)-
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tilt. The local dynamics of the particles and the surface are coupled: H and L particles at

neighboring sites may interchange locations, and do so preferentially if the local tilt of the

surface favors a downward move for H. Particles reside on lattice sites and interact via hard-

core exclusion: a site holds at most one particle (H or L) and there are no holes. Hence, if ρH

and ρL are the average densities of the H and L species respectively, then ρH = 1− ρL. Hence,

it suffices to work with a single variable ρ that denotes average density of the H particles

in the system. If the symbols / and \ indicate upward and downward tilts of the surface,

respectively, then the particles follow the dynamics:

W(H\L→ L\H) = D + a

W(L\H → H\L) = D− a

W(H/L→ L/H) = D− a

W(L/H → H/L) = D + a (2.1)

where W denotes the probability per unit time for a particular process to occur. This dy-

namics conserves the total number of H (and L) particles. Under the action of the H and L

particles, a local hill (∧) on the surface might get pushed downward, or a valley (∨) upward.

In one dimension surface dynamics can be represented as,

W(/H\ → \H/) = E + b

W(\H/→ /H\) = E− b

W(/L\ → \L/) = E− b′

W(\L/→ /L\) = E + b′ (2.2)

The dynamics conserves the overall slope i.e. 1
N ∑i

1+τi+1/2
2 = m, where m denotes the fraction

of up-slopes in the surface. We use periodic boundary conditions so that,

σi = σi+N , τi+1/2 = τi+1/2+L (2.3)

In characterizing the ordered phases, we have mostly considered m = 1/2, i.e., no overall

slope in the landscape although our results remain valid for all particle and bond densities.

In the disordered part of the phase diagram, however, we have also considered m 6= 1/2.

Figure 2.1 shows the phase diagram of the system in the scaled b− b′ plane, with a = 0.5.

However, the qualitative features of the phase diagram remains same for any a > 0. We

present a brief overview of all the phases shown in the diagram in the rest of this chapter.
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2.3 phase diagram

As we vary the transition rates in Eqs. 2.1 and 2.2, we encounter different phases. The varia-

tion is restricted to the regime in which the parameter a in these equations remain positive.

In other words, the H particles always show a tendency to slide downhill. The constants b, b′,

on the other hand, can be positive, negative, or zero. The differential action of the H and L

particles on the landscape have macroscopic consequences, and result in different phases.

Figure 2.1: Phase diagram in the scaled b− b′ plane. For b > 0 and b′ > 0, the system shows SPS. The
dotted horizontal and vertical lines are related to each other via interchange of the two
particle species. On these lines the system is in IPS phase. The striped region (−b < b′ < 0)
in the 2nd and 4th quadrants represent FPS phase and are connected by H − L exchange
symmetry. b = −b′ line corresponds to FDPO phase. The dotted region beyond b = −b′

line correspond to disordered phase.

Fig. 2.1 shows that the b′ = −b line acts as the boundary between ordered and disordered

phases. This can be also be seen directly from a linear stability analysis of the correspond-

ing continuum theory, describing the system as a coupled time evolution of two conserved

fields, the density field of the particles and the tilt field (or height gradient) of the landscape.

One can write down the continuity equations in terms of the particle current and the tilt

current. The particle current can be denoted by the difference in the rightward and leftward

fluxes of the H-particles per unit time, while the bond current by the difference between the

rightward and leftward fluxes of the up-tilts per unit time in the stationary state. Denoting

the coarse-grained particle density as ρ(x, t) and landscape height gradient as m(x, t), the

corresponding currents within mean-field approximation are given by,

Jρ = 2aρ(x, t)[1− ρ(x, t)][1− 2m(x, t)] (2.4)

Jm = m(x, t)[1−m(x, t)][2ρ(x, t)(b + b′)− 2b′] (2.5)
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In the disordered phase, the hydrodynamic expansion of ρ(x, t) and m(x, t) about the ho-

mogeneous state can be used and only linear terms in δρ(x, t) = ρ(x, t)− ρ0 and δm(x, t) =

m(x, t)−m0 in the expression for Jρ and Jm can be retained to get the continuity equation in

the form,

∂t

 δρ

δm

 =

 0 −4aρ0(1− ρ0)

(b + b′)/2 0

 δρ

δm

 (2.6)

Here, ρ0 is the average density of the H particles and m0 is the average value of the slope.

Here, we have used the fact that the surface is an untilted one i.e. m0 = 1/2. In our model,

the coupling between the particles and the landscape is such that the mobility of one species

depends on the local density of the other. Our linear stability analysis in this case shows that

the eigenvalues of the Jacobian matrix

λ± = ±
√
−2aρ0(1− ρ0)(b + b′) (2.7)

that enters the continuity equations are real for b < −b′, which implies a homogeneous or

disordered state for both particles and landscape. These eigenvalues represent the speeds of

the kinematic waves of fluctuations described in 1.2. However, for b > −b′, the eigenvalues

have an imaginary part indicating growth of instability which heralds the onset of order-

ing. It may be worth mentioning here that the nature of cross-species coupling between the

mobility and density is crucial. If instead of depending on the density, the mobility of one

species depended on higher derivatives of density of the other species, the results might

have been different. In [53] a coupled driven system was studied where the mobility of one

species depended upon the second derivative of the density of the other species. In that case,

however, no ordered phase was found, and homogeneous solutions were shown to remain

valid for all parameter regimes.

For b, b′ > 0, the part of the surface containing L particles has a bias to move upward; this

results in an SPS phase. For the SPS phase, the system exhibits the purest form of ordering

where all the different species in the system, e.g., H, L, up-slopes and down-slopes completely

phase separate. For b > 0 and b′ = 0, the landscape beneath the L particles has unbiased

local fluctuations, and on the macroscopic scale an IPS phase results. In this case, the particle

species still remain completely phase separated. However, although the part of landscape

holding the H-cluster shows pure phase, the landscape beneath the L-cluster is devoid of

any pure domains and show a linear gradient in density. Moving further anticlockwise into

the phase diagram, for −b < b′ < 0, the L particles push the landscape downward, but with

a rate smaller than the H particles do, and we have an FPS phase. In the FPS phase, there

are no pure domains present in the landscape although the purity of the particle phases is
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still retained. The limit b′ = −b, corresponds to the case when H and L particles behave

identically and we have an FDPO state, characterized by weak phase ordering among the

particles and a product-measured landscape [27]. For −b > b′, the L particles push the

surface downward at a larger rate than H particles and in this case neither the landscape

nor the particles show any long-ranged ordering and the system is in a disordered phase. A

brief description of the different phases is tabulated in the table below and a figure showing

typical configurations of each of the phases in shown in Fig 2.2.

Phase Condition Particles Landscape Downward velocity

(a)SPS b′ > 0 Single, compact,
macroscopic H and L
clusters

Complete phase separation of up-slope and down-slope
bonds

∼ exp(−αN)

(b)IPS b′ = 0 Deep valley beneath H cluster and disordered slopes with
gradient ∼ 1/N below L cluster

∼ 1/N

(c)FPS −b < b′ < 0 Partial phase separation of slopes beneath H cluster and
disordered beneath L cluster

Finite

(d)FDPO b′ = −b Compact macroscopic clusters of fluctuating lengths Disordered Finite

(e) Disordered −b > b′ No macroscopic clusters Disordered Finite

Table 2.1: Different phases observed in the LH model and their qualitative descriptions.
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Figure 2.2: We show typical configurations of our system in each of the phases. The thick lines rep-
resent the region occupied by the H-particles while remaining parts are occupied by L-
particles.

2.3.1 Strong phase separation(SPS)

The grey region of the phase diagram, where b, b′ > 0, corresponds to the strongly phases

separated (SPS) states reported by Lahiri et. al. [24, 25], as appropriate to sedimenting col-

loidal crystals. In this regime, the light particles tend to move the surface upward whereas

19



the heavier particles tend to push the surface around them, downwards. In steady state, the

up-slope and down-slope surface bonds phase separate to form a single macroscopic val-

ley and hill, which hold all the H and L particles, respectively, in separated clusters (see

Fig. 2.2(a)). Both particles and tilts show strong phase separation (SPS). This phenomenon is

known as strong phase separation because the ordered states survive even at arbitrarily high

temperatures. In this context, the notion of a temperature in the system can be introduced in

the form of D−a
D+a = q = e−β where, β = 1/T. For q 6= 0, the H particles gain a non-vanishing

rate of climbing uphill. However, for a > 0, the value of q always remains less than 1, which

signifies that the H’s always have a higher tendency to slide down towards any local min-

imum present in the landscape. In these class of systems, for any q < 1, sufficiently away

from the domain boundaries, pure domains that scale with the size of the system, can always

be found. For these systems when domain merging can take place at high temperatures, the

coarsening process is found to be logarithmically slow, due to existence of meta-stable states

whose lifetime diverges exponentially with the system size N.

We observe [47] in this phase that for particular choices of the rates, the system satisfies

detailed balance and in the steady state, satisfies Boltzmann measure ∼ exp(−βH) with

respect to a Hamiltonian containing long-ranged interactions. We present a detailed proof

for this in the next chapter. The long-ranged interactions in the Hamiltonian give rise to

energy that scales as N2 and hence for any non-zero β, or equivalently, any q < 1, the system

shows SPS: the up-slope and down-slope surface bonds phase separate to form a single deep

valley and all the particles are present inside that valley in a single cluster.

2.3.2 Infinitesimal current with phase separation(IPS)

The b > 0, b′ = 0 case corresponds to the IPS phase which is obtained along the dashed

lines of the phase diagram in Fig. 2.1. In this case, the local fluctuations in the surface

occupied by L particles are of the symmetric Edwards-Wilkinson type [37], while the H

particles continue to push the surface down. In the steady state, the H and L species undergo

complete phase separation as in the SPS phase. However, the entire landscape does not show

phase separation as in the SPS phase — while the part holding the H-cluster forms a deep

valley consisting of pure macroscopic domains of up and down-slope bonds, the rest of it

beneath the L-cluster is not ordered and the bonds to show a 1/N density gradient (see Fig.

2.2(b)). In this phase, unlike the SPS phase, the detailed balance breaks down for all densities

and the system carries a net current scaling inversely as the system size. The steady state

current in the system manifests itself in a downward motion of the entire landscape with an

average velocity 1/N for a lattice of size N and hence the name infinitesimal fall with phase

separation. Contrary to the SPS phase, where metastable states result in logarithmically slow
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coarsening process, the relaxation to an IPS phase takes place algebraically fast (t ∼ N2) as

we shall see in more details in Chapter 3. We carry out the static characterisation of the IPS

phase in Chapter 3 by measuring the density profiles of the particles and bonds which show

that in steady state, the landscape beneath the L-cluster can be viewed as an open chain

symmetric exclusion process [50, 51]. The detailed correspondence of the static and dynamic

aspects of the IPS phase with an open chain SEP will be carried out in Chapters 3 and 4.

The coexistence of an ordered valley along with the symmetrically fluctuating part of the

landscape, gives rise to rich steady state dynamics with time-scales growing algebraically

with N for the landscape, and exponentially with N for the particles.

2.3.3 Finite current with phase separation(FPS)

The FPS phase sets in for b > 0 and −b < b′ < 0 when both H and the L’s push the

landscape downwards, but the latter at a lower rate than the former. As in the SPS and IPS

phases, the H and L species segregate into pure phases. The landscape forms a macroscopic

valley holding the H cluster while the part beneath the L cluster is disordered — unlike in the

SPS and IPS phases, the two arms of the macroscopic valley now have a slope of magnitude

less than unity, corresponding to a finite fraction of both tilts being present in both the arms

(see Fig. 2.2(c)). The presence of a finite tilt current through the system results in a finite

downward velocity of the surface and in steady state, the entire surface moves downward

at finite speed, preserving the macroscopic valley and disordered tilt region, along with the

pure domains of H and L particles. By measuring the density profiles of the upslope bonds,

we identify the landscape beneath the L-cluster to be in the maximal current phase in an

open-chain asymmetric exclusion process [20]. Similar to the IPS phase, the coarsening to

the FPS phase happens in an algebraic time ∼ N2.

2.3.4 The disordered phase

In the disordered region shown in Fig. 2.1, neither the particle species nor the tilts shows

long-range order. However, there are finite, short-ranged correlations present everywhere

in this phase except at a particular point in the phase diagram where the system obeys

product measure [54]. In all of the ordered phases described so far, the particles remain

static and hence, the steady state particle current Jρ is zero. The landscape, on the other

hand, undulates beneath the particle clusters and gives rise to bond current Jm that scales

inversely as the system size in the IPS phase and remain finite in the FPS phase. On contrary,

in the disordered phase, both Jρ and Jm are finite. With knowledge of the current-density

relationship [(Jρ, Jm) vs. (ρ, m)] in the system, one may write down the linearised continuity
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equations (see Sec. 1.2). The eigenvalues of the Jacobian matrix A (Eq. 1.4) represent constant

speeds at which the fluctuations in the density fields travel around the system. Using suitable

linear combination of the fields, one can construct normal modes which are decoupled at

the linear level. The non-linear coupling between these propagating modes governs their

dissipation in space and time and also their scaling forms. Following the formalism using

non-linear fluctuating hydrodynamics and mode coupling theory that has been described in

Chapter 1, we try to characterise these propagating and dissipating modes in the disordered

part of the phase diagram. However, for our system, the closed form expressions for the

short-ranged correlations are not known. As a consequence, due to lack of knowledge of

exact expressions of current-density relationship, we rely on approximate expressions for

current to carry out the formalism described in Sec. 1.2 and calculate the mode coupling

matrices 1.6. We check the final predictions of NLFH through numerical simulations and

present our results on the disordered phase in Chapter 6.

2.4 conclusion

In this chapter, we have explained our model of two coupled species that exhibits different

ordered phases and explicitly demonstrated how the coupling affects the qualitative nature

of the ordering. The model is that of a lighter and a heavier particle species moving on a

potential energy landscape. The particles try to lower the potential energy, and in occupying

valleys in the landscape, the heavier species always gets preference over the lighter one.

Most importantly, the particles also affect the landscape locally, so as to lower the energy

further. Depending on how each species interacts with the landscape, we find three different

ordered phases (SPS, IPS, and FPS) that show long-ranged order in both particles and the

landscape, a phase where the landscape is disordered but the particles show weak ordering

(FDPO), and a disordered phase where the particles and the landscape show finite, short-

ranged correlations. in the system. We present detailed characterisation of the phases in the

subsequent chapters of this thesis.
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3
S TAT I C P R O P E RT I E S O F O R D E R E D P H A S E S I N T H E L H M O D E L

3.1 introduction

In this chapter, we demonstrate and discuss the static features of different emergent phases

in a coupled driven system in which two species of particles are advected by a fluctuating

potential energy landscape. Due to the two-way coupling between the landscape and the

particles, the system shows new interesting phases, characterized by different sorts of long-

ranged order in the particles and in the landscape. In all these ordered phases, the two

particle species L and H phase separate completely from each other, but the underlying

landscape may either show complete ordering, or may show coexistence of ordered and

disordered segments, depending on the differential nature of effect produced by the particle

species on the landscape. We discuss several aspects of static properties of these phases in

one dimension. Results presented in this chapter have been reported in [48].

3.2 static characterisation of the ordered phases

In this chapter, we present our results on the static characterisation of the ordered phases

obtained in the particle-landscape model that have qualitatively been discussed in Chapter

2. As described in Sec. 2.2, the L− H model consists of two coupled systems with conserved

components. The system describes two species of particles moving stochastically on a fluc-

tuating energy landscape, one species being lighter (L) while the other heavier (H). The

particles tend to minimize their energy by moving along the local potential gradient and

also by modifying the landscape around their position to further lower the energy. Generi-

cally, the H particles preferentially displace the L particles while sliding downward along

the landscape. Further, each species affects the local landscape dynamics differently.

In Chapter 2, we have already shown the phase diagram in the b− b′ plane depicting the

different phases in our model (see Fig. 2.1). In Fig. 3.1, we present an alternative representa-

tion of the same phase diagram and explain.
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Figure 3.1: Phase diagram in the R − R′ plane, where R =
E− b
E + b

and R′ =
E + b′

E− b′
with model

parameters E, b and b′ defined in Eq. 2.2 as part of model description in Chapter 2. Here,
R > 1 (R′ < 1) indicates a downward bias imparted by H (L) particles on the landscape,
and R′ > 1 indicates that L particles push the landscape upward. For 1 < R′ < ∞, one has
the SPS phase. In this regime, detailed balance in satisfied in the system on the straight
line R = q2R′ where, q = (D − a)/(D + a). The LR model is shown by a solid circle on
this line. The dashed lines shown in the diagram correspond to the IPS phase. The dotted
region corresponds to the FPS phase (R′ < R < 1), while the white region corresponds to
the disordered phase (R < R′ < 1). Disordered phase is also seen when R′ < 1 and R = 1.
For R = R′ < 1 FDPO phase is observed.

On varying the transition rates in Eqs. 2.1 and 2.2, we encounter different phases. For now,

we restrict this variation to the regime in which the parameters a and b in these equations

remain positive. In other words, the H particles always show a tendency to slide downhill

and push the landscape downward. The ratio,

R =
E− b
E + b

(3.1)

then always remains bounded between 0 and 1. The constant b′, on the other hand, can be

positive, negative, or zero and the ratio,

R′ =
E + b′

E− b′
(3.2)

can assume any value between 0 and ∞. The differences in the action of the L particles have

macroscopic consequences, and result in different phases.

For b′ > 0, or 1 < R′ < ∞ the part of the surface containing L particles has a bias to

move upward; the macroscopic consequence is that an SPS phase is obtained. For b′ = 0,

or R′ = 1, the landscape beneath the L particles has unbiased local fluctuations, and on

the macroscopic scale an IPS phase is encountered. For −b < b′ < 0, or R′ < R, the L

particles push the landscape downward, but with a rate smaller than the H particles do,

and we have an FPS phase. The limit b′ = −b, or R = R′ corresponds to the case when H

and L particles behave identically and we have an FDPO state, characterized by weak phase
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ordering among the particles and a disordered landscape. For −b > b′, the L particles push

the surface downward at a larger rate than H particles and in this case neither the landscape

nor the particles show any ordering and the system is in a homogeneous or disordered phase.

Fig. 3.1 shows the phase diagram of the system in the R− R′ plane. In the remaining part of

this chapter, we discuss several static aspects of the different ordered phases in detail.

3.3 sps (strong phase separation) phase [b ′ > 0]

In the striped part of the phase diagram (R ′ > 1), the model is identical to that considered

by Lahiri and Ramaswamy [24, 25] in the context of sedimenting colloidal crystals. In this

regime, the system exhibits SPS. While the H’s push the landscape down, the L’s tend

to push it upwards. Both particle species and the upslope and downslope bonds of the

landscape undergo complete phase separation into a macroscopic valley and a hill that holds

the H and the L cluster respectively, as shown in Fig. 2.2(a) [Chapter 2].

3.3.1 Detailed balance in the SPS phase

In [25] it was shown that if the surface is untilted i.e. m = 1/2 and the density ρ of the H

particles is also 1/2, the condition of detailed balance holds with respect to a Hamiltonian

with long-ranged interactions, provided that the rates obey certain criteria. We show below

that this result can be generalized to an arbitrary density ρ, with a ρ-dependent condition

on the rates. In this case, detailed balance holds and the steady state measure of the system

is given by ∼ exp(−βH) with respect to the following Hamiltonian:

H =
L

∑
i=1

(n i − λ)h i (3.3)

where, h i is the height of the i-th site defined as h i = ∑ i−1
j=1 τj+1/2 and n i is the occupancy

of the i-th site which takes the value 1 or 0, according as the site is occupied by an H or an

L particle. The parameter λ may assume any value between 0 and 1 and characterizes the

symmetry under interchange of L and H . It is suffices to consider the range 0 ≤ λ ≤ 1/2

as H remains invariant under λ → 1 − λ and n i → 1 − n i . Figure 3.2 shows the rates of

the allowed microscopic moves along with the change of energy they entail. It is easy to see

from this figure that the condition of detailed balance is satisfied for the following choice of

rates,

D − a
D + a

= q ,
E − b
E + b

= q2−2λ ,
E − b ′

E + b ′
= q2λ (3.4)
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where q = e−β . Note that the system is defined on a ring and hence it is translationally

invariant. The height h i , as defined above, is measured with respect to the first site. If the

sites are relabelled such that the site k with height hk = δ is the new origin, then the height

of all the sites are changed as h ′i = h i − δ. Hence, in order to ensure that the total energy of

the configuration does not change as a result of this relabelling, one must have λ = ρ, where

ρ is the total density of H particles. Thus, in the λ − ρ plane, it is only along the locus λ = ρ

that detailed balance holds with H given by Eq. 3.3.The limit λ = ρ = 1/2 corresponds to

the case considered in [25] for the Lahiri-Ramaswamy model.

Figure 3.2: Schematic representation of different transitions that are allowed to occur in the system.
∆E′s denote the energy costs involved in the transitions, as per the Hamiltonian in Eq. 3.3.
Solid (empty) circles represent H (L) particles.

3.3.2 Coarsening in the SPS phase

As found earlier in [24–26], for all the models exhibiting strong phase separation the coarsen-

ing process is found to be logarithmically slow, due to existence of metastable states whose

lifetimes diverge exponentially with the system size N. In our model, we find that the entire

parameter regime marked by stripes in Fig. 3.1 shows SPS where the coarsening is loga-

rithmically slow in time. For b′ > 0, the landscape occupied by an L-cluster tends to move

upwards and forms a hill, while an H-cluster pushes the landscape down and forms a val-

ley. For two adjacent valleys with H-clusters to merge, the time to dissolve the intermediate

hill containing the L-cluster grows exponentially with the size of the L-cluster, and hence

the final SPS state is reached over a time-scale eγN . For estimating the relaxation time, we

measure two point density correlation function for the H particles defined as,

C(r, t) =< ρi(t)ρi+r(t) > −ρ2
0 (3.5)

where, ρi(t) is 1(0) if the ith site is occupied by an H(L) particle at time t during the coarsen-

ing phase. The angular brackets denote average over initial conditions. ρ0 denotes the global

density of H particles in the system. Figure 3.3 shows the scaling collapse of the equal time

26



density correlation function for H particles when separations are scaled by the coarsening

length scale L(t), which is found to grow as ln(t) for two different values of λ.
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Figure 3.3: Scaling of particle density correlation in the coarsening phase. The equal time density
correlation for the particles C(r, t) shows a collapse when r is scaled by L(t) ∼ ln(t) for
two different values of λ.

3.3.3 Rescaled temperature and phase transitions in SPS phase

Although, the Hamiltonian in Eq. 3.3 is defined in terms of local height and local occupancy,

the definition of the height field generates long-ranged interactions between ni and τj+1/2 in

the Hamiltonian. This gives rise to a super-extensive energy that scales as N2 which at any

finite temperature always overrides the extensive entropy term. In other words, as follows

from Eq. 3.4, for any non-zero β, or equivalently, any q < 1, the H-rich phase has a vanishing

fraction of L particles, and vice versa. Such phases are refered to as ‘compact’ as they exclude

intermittent islands of the other species. The name ‘strong phase separation’ actually refers

to this particular aspect of this phase [24, 25]. However, if the parameter β is rescaled by

system size N, i. e. β → β/N, then the energy and entropy terms become comparable and

the system shows an order-disorder transition at a critical βc [26, 55]. Below, we present

a calculation based on mean field theory to provide an estimate of this critical point that

matches remarkably well with the numerical simulations in our model.

Let ρi denote the probability to find an H particle at site i and mi+1/2 denote the probability

to find an upslope bond between sites i and (i + 1). Using the dynamical rules described
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in section 2.2[see Chapter 2], one can write down the time-evolution equations for these

probabilities, within mean-field theory, neglecting all correlations:

dρi

dt
= ρi−1(1−mi−1/2)(1− ρi)− ρi(1−mi+1/2)(1− ρi+1) + qρi−1mi−1/2(1− ρi) (3.6)

− qρimi+1/2(1− ρi+1)

dmi+1/2

dt
= mi−1/2ρi(1−mi+1/2) + q2−2λ(1−mi+1/2)ρi+1mi+3/2 (3.7)

+ (1−mi+1/2)(1− ρi+1)mi+3/2 + q2λmi−1/2(1− ρi)(1−mi+1/2)

−mi+1/2ρi+1(1−mi+3/2)− q2−2λ(1−mi−1/2)ρimi+1/2

− (1−mi−1/2)(1− ρi)mi+1/2 − q2λmi+1/2(1− ρi+1)(1−mi+3/2)

Assuming slow spatial variation of ρ and m fields, we can take the continuum limit where

ρ(x), m(x) are density profiles at rescaled positions x = i/N and obtain the following expan-

sion:

ρi±1 = ρ(x)± 1
N

∂ρ(x)
∂x

+
1

2N2
∂2ρ(x)

∂x2 + ... (3.8)

Similarly,

mi+3/2 = m(x) +
1
N

∂m(x)
∂x

+
1

2N2
∂2m(x)

∂x2 + ... (3.9)

mi−1/2 = m(x)− 1
N

∂m(x)
∂x

+
1

2N2
∂2m(x)

∂x2 + ...

Next, we write q = e−β/N = 1− β

N
+

β2

2N2 + ..., in which the parameter β has been explicitly

scaled by the system size. The time-evolution equations 3.6 and 3.7 then become,

∂ρ

∂t′
=

∂2ρ

∂x2 + 2βρ(1− ρ)
∂m
∂x

+ β(2m− 1)(1− 2ρ)
∂ρ

∂x
(3.10)

∂m
∂t′

=
∂2m
∂x2 − 2β

∂

∂x
[ρm(1−m)] + 2βλ

∂

∂x
[m(1−m)] (3.11)

where t′ = t/N2 is the rescaled time.

In the stationary state, the time-derivatives on the left hand sides of the Eqs. 3.10 and

3.11 vanish. Recalling that the overall density of upslope bonds in the system is 1/2 and
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periodic boundary condition requires the density of H particles to be equal to λ, we linearize

m(x) = 1/2 + δm(x) and ρ(x) = λ + δρ(x), in the stationary state to obtain,

∂2

δx2 δm− β

2
∂

∂x
δρ = 0 (3.12)

∂2

δx2 δρ + 2βλ(1− λ)
∂

∂x
δm = 0 (3.13)

Making the Fourier expansions,

δm(x) = ∑
n

an exp(2πinx/N) (3.14)

δρ(x) = ∑
n

bn exp(2πinx/N)

we find from Eqs. 3.12 and 3.13 that,

i2πnan =
β

2
bn (3.15)

and,

i2πnbn = −2βλ(1− λ)an. (3.16)

To obtain non-zero solutions for an and bn we must have,

β =
2πn√

λ(1− λ)
(3.17)

which has the minimum value βc =
2π√

λ(1− λ)
for n = 1. For any β smaller than this

value no non-zero an and bn can be found and ρ(x) and m(x) only allow uniform solutions,

corresponding to a disordered state (a0 and b0 non-zero). Thus βc gives the critical point for

the order-disorder transition in the system.

To verify this in simulations, we define the order parameters a,s

sρ =
1
N

N

∑
i=1

nini+1 − λ2 (3.18)

sm =
1

4N

N

∑
i=1

(1 + τi+1/2)(1 + τi+3/2)−
1
4

(3.19)

which characterize the order in the particles and the landscape, respectively. Our simulations

show that for small values of β, the average values 〈sρ〉 and 〈sm〉 are zero, indicating a
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disordered phase. As β increases, the system goes into an ordered phase with finite values

of 〈sρ〉 and 〈sm〉. To calculate the critical β, at which the transition takes place, we plot the

second order Binder cumulant,

fα = 1− 〈s2
α〉/〈sα〉2 (3.20)

as a function of β (see Fig. 3.4), where α = ρ, m for different system sizes. Since here, one does

not need to distinguish between the positive and negative values of the order parameter sα,

the quantity defined in Eq. 3.20 serves the purpose of the standard binder cumulant defined

by,

bα = 1− 〈s4
α〉/3〈s2

α〉2 (3.21)

At the critical point βc, the value of fα must be universal, which means the curves for different

N values must coincide at βc. In Fig. 3.4 we present data for λ = 1/5 for which we expect

βc = 5π ' 15.708. From our simulation data we find βc ' 15.65 and 15.76 for α = ρ and

α = m, respectively. These values are close to the theoretical prediction.
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Figure 3.4: Temperature variation of sρ and sm for three different values of N [plots (a) and (c)]. (b)
and (d) show the cumulants fρ and fm for three N values. We have used λ = 0.2 here.
We obtain the best linear fits to the data points for each value of N. From the point of
intersection of the straight lines , βc is estimated to be 15.65± 0.001 for fρ and 15.76± 0.005
for fm which is close to theoretical prediction 5π. The data shown here have been averaged
over at least 108 histories.
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3.4 ips (infinitesimal current with phase separation) phase [b ′ = 0]

The IPS phase is obtained along the dashed lines of the phase diagram in Fig. 3.1, where b ′

vanishes, alternatively, R ′ = 1 and from Eq. 3.4 it follows that λ = 0. In this case, the local

fluctuations in the surface occupied by L particles are of the symmetric Edwards-Wilkinson

type [37], while the H particles continue to push the surface down. In our derivation of

detailed balance condition in section 3.3.1 above, we have shown that λ = ρ has to be

satisfied for a periodic system. In the IPS phase this condition gets violated for all finite ρ.

As a result, the detailed balance breaks down. We use the Kolmogorov loop condition [52]

to explicitly show the lack of detailed balance, as illustrated below.

3.4.1 Breakdown of detailed balance in the IPS phase

The Kolmogorov loop condition [52] states that the necessary and sufficient condition for

a system to satisfy detailed balance is that for every closed loop in configuration space,

Q = W (1→2)W (2→3) . . .W (K→1)
W (2→1)W (3→2) . . .W (1→K)

= 1 where W ( i → j) denotes the transition rate from con-

figuration Ci to C j . To show that detailed balance is violated, it suffices to find a single

loop in configuration space for which the above condition is not satisfied. In Fig. 3.5 we

explicitly show this for a set of local configurations. Since each configuration is specified

by the particle occupancy at the lattice sites, and slope of the lattice bonds, the first and

the last configurations in the sequence presented in Fig. 3.5 are identical and hence this se-

quence forms a closed loop in the configuration space. According to our dynamical rules,

W (4 → 5) = D + a and W (5 → 4) = D − a. All other rates W ( i → i + 1) are same as

the reverse rate W ( i + 1 → i), since in the IPS phase b ′ = 0. The ratio Q then becomes

Q = D+a
D−a 6= 1, which proves violation of detailed balance.

Figure 3.5: Breakdown of Kolmogorov loop condition in the IPS phase. Starting from the first con-
figuration, the system passes through a sequence of configurations and comes back to
the starting configuration again, but the ratio Q = W(1→2)W(2→3)W(3→4)W(4→5)

W(2→1)W(3→2)W(4→3)W(5→4) 6= 1. This
shows that the system does not obey detailed balance.
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3.4.2 A single H particle in the IPS phase: height profile of the landscape

In order to understand the nature of the IPS phase, let us first consider the case of a single H

particle with (N − 1) lattice sites occupied by L particles. According to the dynamical rules,

the local height fluctuations at these (N − 1) sites are symmetric, of Edwards-Wilkinson

type [37], and only at the site containing the H particle the height fluctuation is asymmet-

ric, of Kardar-Parisi-Zhang type [36]. Obviously, this asymmetry drives the system out of

equilibrium and there is a non-zero current in steady state, which gives rise to a downward

velocity of the surface. Since the local fluctuations are symmetric almost everywhere in the

system, to support this downward drift, a gradient is generated in the density of upslope

and downslope bonds of the surface. We calculate this gradient within mean-field theory

below.

Let us consider a site at a distance k from the position of the single H particle in the system,

and let S+(k, N) be the probability to find an upslope bond between this site and its right

neighbor. Similarly, let S+(k− 1, N) be the probability to find an upslope bond between the

site and its left neighbor. Within mean-field theory, the site under consideration will be at the

top of a local hill with probability S+(k− 1, N)[1− S+(k, N)]. From this local configuration,

the height of the site can decrease with rate E, when the local hill flips to a valley (see

Eq. 2.2). Likewise, the probability that the site is at the bottom of a local valley is given by

[1− S+(k− 1, N)]S+(k, N) and from here its height can increase with the same rate E. The

downward velocity of the surface at this position is then E[S+(k − 1, N){1− S+(k, N)} −
{1− S+(k− 1, N)}S+(k, N)].

In the steady state, this velocity must be the same everywhere in the system and hence

independent of k. In other words, [S+(k− 1, N)− S+(k, N)] = C, which is a constant. More-

over, for an untilted surface, ∑k S+(k, N) = N/2. These two relations together imply that

S+(k, N) decreases linearly with k with a gradient ∼ 1/N, for large N. We verify this from

the simulation data in Fig. 3.6.

3.4.3 Clustering of H particles in the IPS phase in the adiabatic limit

In this section, we perform a simple calculation to explain the rationale behind the clustering

tendency of the H in the IPS phase.

First let us consider a large system in the continuum limit with a finite M number of H

particles in it. Let x1, x2, ..., xM be the positions of these particles. Apart from these positions,
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Figure 3.6: We measure the density of upslopes S+(k, N) as a function of the scaled distance k/N,
where k is the distance measured from the position of the single H particle in a system
of size N. The profile decreases linearly with a gradient ∼ 1/N as predicted by our mean
field analysis. The data shown here have been averaged over at least 104 initial histories.

the local height fluctuations of the surface are symmetric and of Edwards-Wilkinson type,

while at the positions xi’s the height fluctuations are biased. This is captured by the equation,

∂th(x, t) = D∂2
xh(x, t) + η(x, t) + j0

M

∑
n=1

δ(x− xn) (3.22)

where j0 represents the bias imparted by the H particles, η(x, t) is the white noise and D the

surface diffusivity. To find the mean profile h(x, t), we average over the noise and obtain,

∂th(x, t) = D∂2
xh(x, t) + j0

M

∑
n=1

δ(x− xn). (3.23)

Let us first consider M = 1, when there is a single H particle present in the system at

the position x1. To solve the above equation, we make an adiabatic assumption based on

the separation of time-scales. Suppose the H particle is very heavy such that it hardly ever

moves during the time the height fluctuations of the surface are taking place. In this limit,

we can treat x1 as the position of a quenched defect and without any loss of generality put

x1 = 0. The above equation can then be solved using Green’s function method [56]. Starting

from a flat height profile at t = 0, we can write the height profile at time t as,

h(x, t) = j0
∫ t

0

1
(4πD)1/2

e−x2/4Ds

s1/2 ds =
j0

4Dπ1/2 xΓ
(
−1

2
,

x2

4Dt

)
(3.24)
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where Γ denotes the incomplete Gamma function. For large t, we have x2/4Dt� 1 and,

h(x, t) ' j0√
π

[
2

√
t
D
−
√

π

2D
| x |
D

]
. (3.25)

Similarly, for M = 2, when there are two quenched defects in the system, at x1 and x2, each

will generate a height profile around its position. As the system is linear, the resulting height

profile is given by,

h(x, t) ' j0√
π

[
2

√
t
D
−
√

π

2D
(| x− x1 | + | x− x2 |)

]
. (3.26)

If each particle has mass m, the mean gravitational energy Eg associated with the system is,

Eg = −mgj0√
π

[
4

√
t
D
−
√

π

D
| x1 − x2 |

]
(3.27)

which is minimum when | x1− x2 | is minimum. This explains why the two H particles tend

to cluster together. This argument can be extended immediately to arbitrary M, providing

insight into the strong clustering tendency of H particles in the IPS phase.

Indeed for a finite density of H particles in the lattice model, where the particles have

a finite size, we find a complete phase separation of H and L particles. The upslope and

downslope surface bonds lying under the H particle cluster, phase separate to form a deep

valley. The domains of all-upslope and all-downslope bonds extend up till the edges of the

H particle cluster. Beyond that, in the L-phase, the landscape has a parabolic shape with

a mean curvature 1/N. The fluctuation properties of the surface beneath the L-cluster can

be explained by mapping this part of the system to an open-chain symmetric exclusion

process [50], with the upslope (downslope) bonds being identified with particles (holes); the

pure domains of these bonds in the H-phase act as reservoirs for the respective species. We

elaborate more on this issue in chapter 4 where we discuss the steady state dynamics.

3.4.4 Coarsening in the IPS phase

Interestingly, in the IPS phases there is an enormous reduction in the relaxation time, as

compared to that in the SPS phase. For the IPS phase (b′ = 0), the landscape is organized

differently, and this leads to fast relaxation, with times growing as Nz. Starting from an

initial disordered landscape and randomly distributed particles, the landscape forms small

domains of V-shaped landscape holding small H-clusters. The landscape beneath the inter-

vening L clusters shows symmetric fluctuations which merge in diffusive time to give rise
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to compact domains of upslopes and downslopes holding a single H-cluster. We show a

schematic diagram depicting the domain merging process in Fig. 3.7.
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Figure 3.7: Coarsening mechanism in one dimension for b′ ≤ 0

Figure 3.8 shows the scaling collapse of the equal time density correlation function for H

particles when separations are scaled by the coarsening length scale L(t), which is found to

grow as t1/z. In IPS phase we find z = 2.
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Figure 3.8: The equal time density correlation for the particles C(r, t) shows a collapse when r is
scaled by L(t) ∼ t1/z for b = 0.5, b′ = 0. Here we find z ' 2.

3.4.5 Rescaled temperature and phase transitions in the IPS phase

Compact domains in the IPS phase are observed as long as the H particles act as the heavier

species, i.e., as long as the ratio q = (D− a)/(D+ a) < 1. As q approaches unity, the domains

do not remain as compact and their boundaries become wider. However, this width remains
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finite and in the thermodynamic limit, sufficiently far away from these boundaries a pure

phase is always retrieved. For a finite system size N, there exists a critical value qc, when

the width of the domain boundaries becomes of the order of the system size and the system

becomes disordered.

A similar mean-field calculation as shown in section 3.3.3 can be performed for the IPS

phase as well. Following equations 3.6 and 3.7, one may write the time-evolution equations

for variables ρi, mi+1/2 in the IPS phase. The equations read,

dρi

dt
= ρi−1(1−mi−1/2)(1− ρi)− ρi(1−mi+1/2)(1− ρi+1) + qρi−1mi−1/2(1− ρi) (3.28)

− qρimi+1/2(1− ρi+1)

dmi+1/2

dt
= mi−1/2ρi(1−mi+1/2) + q2(1−mi+1/2)ρi+1mi+3/2 (3.29)

+ (1−mi+1/2)(1− ρi+1)mi+3/2 + mi−1/2(1− ρi)(1−mi+1/2)

−mi+1/2ρi+1(1−mi+3/2)− q2(1−mi−1/2)ρimi+1/2

− (1−mi−1/2)(1− ρi)mi+1/2 −mi+1/2(1− ρi+1)(1−mi+3/2)

Taking the continuum limit and explicitly rescaling β by the system size, the equations

3.28 and 3.29 are given by,

∂ρ

∂t′
=

∂2ρ

∂x2 + 2βρ(1− ρ)
∂m
∂x

+ β(2m− 1)(1− 2ρ)
∂ρ

∂x
(3.30)

∂m
∂t′

=
∂2m
∂x2 − 2β

∂

∂x
[ρm(1−m)] (3.31)

where t′ = t/N2 is the rescaled time. Linearising these equations by expanding the densi-

ties about their global averages and making Fourier expansions 3.14, for the IPS phase one

obtains,

i2πnan =
β

2
bn (3.32)

and

i2πnbn = −β

2
an. (3.33)
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This yields βc = 4π, which we have verified by simulation (see Fig. 3.9).
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Figure 3.9: Temperature variation of sρ and sm for three different values of N [plots (a) and (c)]. (b)
and (d) show the cumulants fρ and fm for three N values. We have used λ = 0 here.
The best linear fits to the data points have been obtained for each value of N. From the
point of intersection of the straight lines , βc is estimated to be 12.47± 0.001 for fρ and
12.45± 0.001 for fm which is close to theoretical prediction 4π. The data shown here have
been averaged over at least 108 histories.

3.4.6 Static correlations in the IPS phase

In Fig. 3.10, we present our results on the static correlation functions for the particles and

for the surface bonds when the system is in the IPS phase. Here we have considered equal

number of H and L particles and all distances have been measured from the centre of mass

of the H-cluster. ρ(r, N) and S+(r, N) denote, respectively, the density of H particles and the

probability to find an upslope bond at a distance r from the centre of mass. Our data show

that the surface beneath the pure domain of H-cluster has the shape of a deep valley consist-

ing of pure phases of upslope and downslope bonds. By contrast, the surface occupied by

the L-cluster in this case behaves like an open-chain symmetric exclusion process connected

to the two reservoirs of upslope and downslope tilts at the two ends. Thus the tilt density

varies linearly in this region with a gradient ∼ 1/N [20], leading to a tilt current and an

infinitesimal downward velocity ∼ 1/N of the entire landscape (Fig. 3.10).
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Figure 3.10: Static correlation functions in IPS phase. (a): Density of H particles ρ(r, N) at q = 0. The
density changes sharply from 1 to 0 indicating pure phases of H and L particles. (b): For
q = (D− a)/(D + a) = 0.99 ( see Eq. 3.4 in 3.3.1), H particle density approaches 1 as N
is increased. This confirms the existence of a pure phase in the thermodynamic limit for
all q < 1. (c) Main plot: For r �

√
N a scaling collapse is obtained for different system

sizes when [1− S+(r, N)]N is plotted against (r − N/4). Inset shows that as r changes
sign, S+(r, N) shows a transition from 0 to 1 across the domain boundary, which is at the
deepest point of the valley. Due to diffusive motion of the domain boundary, S+(r, N)

is a scaling function of r/
√

N in this region. In main plot and inset we show data for
N = 512 (black circles), 1024 (red squares) and 2048 (blue diamonds). (d): For q = 0.99
and 0 � r � N/4 S+(r, N) → 1 as N is increased. These data have been averaged over
at least 3× 105 steady state configurations.

3.5 fps (finite current with phase separation) phase [−b < b ′ < 0]

The FPS phase can be observed in the dotted region of the phase diagram (Fig. 3.1), where

1 > R > R ′ , i.e., when both the particle species push the landscape down, but the H

particles do so at a larger rate than the L’s. In this phase, the H and L particles again show

complete phase separation and although the landscape forms a single macroscopic valley,

neither of the two arms of the valley comprises a compact domain of / or \ bonds, unlike

in the SPS or IPS phases. In this section we present numerical and analytical results on the

static characterisation of this phase.
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3.5.1 Coarsening in the FPS phase

We find a fast coarsening to the FPS phase similar to the IPS phase with domain sizes

growing as t1/z with z = 2. In the FPS phase, during domain merging, the landscapes

beneath the intervening L cluster get pushed downward since b ′ < 0. However, the FPS

phase (−b < b ′ < 0) shows z ' 2 in one dimension for very large N and t while for

smaller values of these variables, we find z ' 2.5. We define r0 as C(r0 , t) = 0 and the

dynamical exponent z can be estimated from the variation of r0 with t, using the scaling

relation r0 ∼ t1/z . Our data shows finite size effects in the value of the dynamical exponent

at small times t < 105(see Fig. 3.11).
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Figure 3.11: The equal time density correlation for the particles C(r, t) shows a collapse when r is
scaled by L(t) ∼ t1/z for b = 0.3, b′ = −0.2 in the left panel. Here we find z ' 2. The
right panel shows plot of r0 vs time during the coarsening phase for b = 0.3, b′ = −0.2.
For large N and t, we obtain r0 ∼ t0.5. For t . 105, we observe a crossover region where
r0 ∼ t0.4. We have used ρ0 = 1/2 here.

3.5.2 Static correlations in H-region of the landscape in FPS phase

A typical configuration in the FPS phase is shown in Fig. 2.2(c). Here, a large valley forms in

the landscape that holds the H-cluster, but unlike IPS phase, this valley consists of domains

of upslope and downslope bonds which are not compact. Let m be the density of downslope

(upslope) bonds in the upslope-(downslope-)rich domain. For a perfectly ordered domain, m

takes the value 0 while in the disordered case m = 1/2, while 0 < m < 1/2 indicates a phase

separation with the minority species intersparsed with the majority species. It is possible to

analytically calculate the value of m in this phase.
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Figure 3.12: (a): Away from the valley bottom S+(r, N) saturates at a value m, which depends on b
and b′. For b′ = −0.3, we vary b and plot m, which matches well with the mean-field
result. Discrete points are from simulation data and the continuous line shows mean-
field solution of Eq. 3.34. We have used N = 1024 here. (b): S+(r, N) changes from the
value (1−m) to m across the domain boundary of width

√
N.

Within mean-field theory, it follows from the dynamical rules (Eq. 2.2) that the average

velocity of the surface in H-region is 2bm(1 − m). In the steady state, this must be equal

to the velocity in the L-region. Now, in the L-region the surface is disordered, and this

part of the surface can be mapped onto an open-chain asymmetric exclusion process in the

maximal current phase (see Fig. 3.13) [47]. The velocity of the surface in this region is then

b′/2. Matching the two velocities in the H and L regions, we find the following quadratic

equation

m2 −m− b′

4b
= 0 (3.34)

which can be solved for m for a given b and b′. To verify this, we measure the density of

upslope bonds in the H-region, across the valley minimum, this density shows a transition

from the value m to (1− m). We compare the m value measured in simulation, with that

obtained from solving Eq. 3.34 and find good agreement (see Fig. 3.12a). The width of the

boundary between the upslope-rich and downslope-rich domains scales as
√

N, as shown

in Fig. 3.12b. We discuss in [49] that this width is related to the motion of the valley bottom

within a region of size ∼
√

N around the center of mass of H-cluster. We would like to

mention here that the system shows rather strong finite size effects and we had to go to

relatively large N (∼ 104) in order to find the saturation value of S+ away from the domain

boundary.

As mentioned above, the behavior of the landscape in the L-region is like that of an open

system. The ordered domains of the upslope and downslope bonds in the H-region act as the

reservoirs which are connected to the two ends of the L region. Mapping the upslope (downs-
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lope) bonds to particles (holes), we find that the surface in the L-region can be mapped onto

an open-chain asymmetric exclusion process, which was introduced in [50] and different

phases were obtained on changing the reservoir couplings. In our system, the properties of

the landscape in the L-region are same as those observed for a maximal current phase in

the open system. The landscape is disordered in the L region, with S+(r, N) = 1/2. From

the H − L domain boundary, S+(r, N) decays algebraically to this disordered value with an

exponent 1/2, as shown in Fig. 3.13.
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Figure 3.13: We plot S+(r, N) after subtracting the disordered phase value 1/2 against (r− N/4) for
two different system sizes with b = 0.3, b′ = −0.2. The decay to a disordered phase occurs
algebraically with an exponent 1/2 (inset). The data shown here have been averaged over
at least 106 initial configurations.

3.5.3 FDPO (Fluctuation-dominated phase ordering) phase [b = −b′]

The FDPO phase can be observed along the R = R′ line in the phase diagram in Fig. 3.1. In

this case, the H and L particles push the surface down at exactly the same rate. The transition

rates between the local hills and valleys of the surface are therefore identical at every lattice

site. In other words, the surface behaves just like an ordinary Kardar-Parisi-Zhang surface

with a downward bias. With periodic boundary conditions, the steady state measure of

Kardar-Parisi-Zhang surface satisfies product measure [57], i.e., the upslope and downslope

bonds of the landscape are independently and randomly distributed and the landscape is

disordered. This remains true even when both b and b′ are zero, and the landscape shows

Edwards-Wilkinson type equilibrium fluctuations, since the same product measure holds for

a periodic Edwards-Wilkinson surface in one dimension.

Note that in this phase, the coupling between the landscape and the particles is one-way,

i.e., while the particles continue being affected by the local height gradient of the landscape,

with moves shown in Figs. 2.1 and 2.2, the local dynamics of the landscape does not depend
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on whether there is an H particle or L particle on it. This limit is tantamount to passive scalar

advection and was studied in detail in [27, 28]. In this phase, while the landscape remains

completely disordered, the H and L particles show clustering accompanied by macroscopic

fluctuations, as shown in Fig. 2.2d. Owing to strong fluctuations present in the system, these

clusters undergo constant reorganization, even in the thermodynamic limit. We do not focus

on this phase in our thesis.

3.6 conclusion

In this chapter, we have studied the static properties of the different phases present in a

coupled non-equilibrium system and explicitly demonstrated how the coupling affects the

qualitative nature of the ordering. In our model described in Chapter 2, a lighter and a

heavier particle species move on a potential energy landscape. The particles try to lower the

potential energy, and in occupying valleys in the landscape, the heavier species always gets

preference over the lighter one. Crucially, the particles also affect the landscape locally, so

as to lower the energy further. Depending on how each species interacts with the landscape,

we find different phases in the system. In the case when the heavier species tends to push

the landscape downward, and the lighter species tends to push it upward, the system shows

SPS phase, where the ordering is strongest. When the heavier species pushes the landscape

downward, but the lighter one does not push the surface in either direction, rather allows

equilibrium local fluctuations of the landscape, we obtain an IPS phase. Finally, FPS phase

is obtained, when the lighter species also pushes the landscape downward, but at a smaller

rate than the heavier ones. In the limit when both the species affect the landscape in a similar

way, either by pushing in a direction with the same rate, or by allowing local equilibrium

fluctuations, we obtain FDPO. And in all other cases, we get a disordered phase, with no

long-ranged correlations. The schematic configurations in Fig. 2.2 (Chapter 2) show that the

main difference between the SPS, IPS and FPS phases lies in the shape of the landscape.

In all these phases, the H and L particles completely phase separate from each other and

form one single H and L cluster. But due to the different nature of effects produced by

these particles on the landscape, one obtains different phases, where the landscape may be

completely ordered or may show coexistence of ordered and disordered segments.
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4
D Y N A M I C P R O P E RT I E S O F O R D E R E D P H A S E S I N T H E L H M O D E L

4.1 introduction

In this chapter we study the dynamical properties of the ordered phases obtained in a cou-

pled model system of two species of particles advected by a stochastically evolving land-

scape. The local dynamics of the landscape also gets affected by the particles. By tuning the

parameters that govern the differential action of the particles on the landscape, one obtains

a phase diagram that reveals presence of several ordered phases and a disordered phase

(see Fig. 2.1). Previously, in Chapter 3, we have had an elaborate discussion on the static

properties of each of the ordered phases. This chapter intends to focus on the dynamics of

the ordered phases. We show that in all the three ordered phases (SPS, IPS, and FPS), there

are macroscopic particle clusters that move over an ergodic time-scale growing exponentially

with system size. However, while in the SPS phase the landscape shows slow dynamics over

an ergodic time-scale, the IPS and FPS phases are associated with fast, algebraic dynamics

in the landscape. We present a scaling ansatz that describes several dynamical correlation

functions of the landscape measured in steady state. Results discussed in this chapter have

been published in [49].

4.2 slow dynamics in the sps (strong phase separation) phase

b, b′ > 0 corresponds to the SPS phase where there is a complete phase separation between

the H and L particles and the upslope and downslope bonds in the landscape as well (see

figures 2.1 and 2.2). This is the phase studied in the Lahiri-Ramaswamy model of sediment-

ing colloidal crystals [24, 25]. The pure domains of up and down-slope bonds form into a

deep ∨-shaped valley holding the H-cluster. An average height profile of the landscape in

the SPS phase is shown in Fig. 4.1. Coarsening towards such a phase is a logarithmically

slow process as has been explained in Sec. 3.3.2. For any b, b′ > 0, the relaxation involves an

Arrhenius process across a large barrier, and the system gets stuck in metastable states [25].

As a result, the relaxation time grows exponentially with the system size in an SPS phase.

43



Such diverging timescales allow for little dynamics in steady state and both particles and the

landscape show slow dynamics over an ergodic time-scale.
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Figure 4.1: Schematic description of various ordered phases. We show the average height profile of
the landscape, H (L) particles are shown by solid (empty) circles. In the SPS phase, due to
complete phase separation between upslope and downslope bonds, average height grows
linearly from the deepest point, with a slope 1. In the IPS phase, the height profile remains
similar to SPS till the edge of the H cluster and then it gradually flattens out. In the FPS
phase, owing to partial phase separation between upslope and downslope bonds in the
H-region, the height grows linearly with a slope smaller than unity, before flattening out
in the L-region.

4.3 dynamics in the ips (infinitesimal current with phase separation) phase

Contrary to the SPS phase, which shows virtually no dynamics in the steady state, the IPS

and FPS phases show rich dynamics. The organisation in the landscape vary widely in na-

ture from one phase to another as demonstrated in Chapters 2 and 3. The landscape in the

IPS phase is characterised by a ∨-shaped bottom holding the H-cluster which flattens and

assumes a parabolic shape beneath the L-particle cluster (see Fig. 4.1). The different sorts

of organisation in the landscape give rise to qualitatively different time-scales in the steady

state dynamics in the ordered phases. For instance, although the centre of mass of the H

cluster remains stationary for a long time, the landscape immediately below it undulates

in time, leading to three distinct temporal regimes in steady state. These are captured by

monitoring the mean-squared displacement σ2
0 of the deepest point of the valley. We present

our data for mean-squared displacement of the deepest valley in the IPS phase in Figure 4.2.

At small times t � N2, we find σ2
0 grows diffusively with a diffusion constant D1 ∼

1/N. But after times ∼ N2, a plateau for σ2
0 is reached at a value ∼ N. From a simple

consideration of the total (gravitational) energy of the H particles, it is easy to show that

when the deepest point coincides with the centre of mass of the H cluster, the energy is
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Figure 4.2: Occurrence of three regimes in the steady state dynamics of the deepest point of the valley.
Main plot: Mean squared displacement of the deepest point of the valley as a function
of time. The displacement shows an initial diffusive growth, followed by a plateau, and
finally another diffusive regime at large time. Bottom Inset: Small time diffusivity D1 ∼
1/N. Top Inset: For large time, the diffusivity D2 ∼ e−αN , with α ' 0.26. These data
correspond to b′ = 0, b = E, a = D and have been averaged over 5000 steady state
configurations.

minimum. Any displacement from this position gives rise to a restoring force that scales

linearly with the displacement. We will shortly demonstrate that the motion of the deepest

point in the IPS phase is described by an Ornstein-Uhlenbeck process [58]; consequently,

the deepest point diffuses within a region of size
√

N around the H cluster centre of mass.

Finally, at very large t, the H cluster itself moves diffusively around the system and the

valley moves along with it. The mean-squared displacement of the deepest point in this

regime has a diffusion coefficient D2 ∼ e−αN . We explain the mechanisms for the short and

large time valley displacements using simple analytical arguments and schematic diagrams

in the following sections.

4.3.1 Mechanism for small time behaviour of valley dynamics in IPS phase

With the help of a schematic diagram in the IPS phase (see Fig. 4.3), we show the positions

of the deepest valley(V), centre of mass of the H-cluster (C), and the right (iR) and left (iL)

edges of the H-cluster and the dynamical variables associated with their fluctuations. The

deepest point of the valley (V) lies at the boundary between two pure domains of upslope

and downslope surface bonds and these pure domains extend upto the edges iL and iR of

the H particle cluster.

The 1/N scaling of the short time diffusivity can be explained using a simple argument.

At short times, the mechanism for valley dynamics involves the propagation of a downslope
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Figure 4.3: The deepest point V of the valley moves a distance x from the centre of mass C of the H
cluster. This causes a height asymmetry ∆h.

(upslope) bond through a pure domain of upslope (downslope) bonds. For example, if a

downslope (upslope) bond reaches the upper edge of the H particle cluster, then it zips

ballistically through the domain of pure upslopes (downslopes) beneath the cluster and

causes V to shift by one unit towards the right (left). The time-scale associated with this

process is proportional to N. Further, to estimate the time-scale for formation of a local hill

at the edge of the H cluster, we show with the aid of a simple mean-field calculation in Sec.

4.3.1.1 , that the average distance of the nearest downslope bond from the H − L domain

boundary scales as
√

N. This downslope bond reaches the H-cluster boundary diffusively

at times ∼ N. Thus the time-scale of the two relevant processes — formation of a local hill

at the edge of the H-cluster, and transport of that hill towards the bottom of the valley —

are both of order N. Since the processes occur with equal weight on the left and right arms

of the valley, the motion of V is diffusive, with diffusivity ∼ 1/N. Finally, in the long time

limit, the centre of mass of the H-cluster undergoes a shift by one unit thus giving rise

to an infinitesimally small diffusivity scaling as exp(−αN). We pictorially demonstrate the

mechanisms for the short and large time behaviour of the valley diffusion in Fig. 4.4.

4.3.1.1 Average distance of the nearest downslope bond from the H − L domain boundary in IPS

phase

In the part of the surface occupied by the L particles, the density profile of the surface bonds

shows a linear gradient (see Fig. 3.10) [47]. We show that within the mean-field approxi-

mation, the average separation between the first downslope bond and the H − L domain

boundary (which occurs at a distance of N/4 from the centre of mass of the H cluster) scales

as ∼
√

N. Let P(r) be the probability that the first downslope bond is located at a distance r
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(A) (B)

(C) (D)

Figure 4.4: Motion of the deepest point over ∼ N2 time-scale. (A) An occupied local hill forms at the
right edge of the particle cluster. (B) The occupied local hill, being unstable, zips through
the pure domain of upslope bonds. (C) The local hill reaches the bottom of the valley. (D)
The deepest point shifts one site to the right.

from the H− L domain boundary, i.e. there is an upslope bond for all j < r, and a downslope

bond at j = r. Within the mean-field approximation, this probability is given by,

P(r) =
r−1

∏
j=1

(
1− 2j

N

)
2r
N

(4.1)

The average value of r is then given by,

〈r〉 = 2
N

+
N/2

∑
r=2

r−1

∑
j=1

(
1− 2j

N

)
2r2

N
(4.2)

To proceed further, we define

z =
r−1

∏
j=1

(
1− 2j

N

)
(4.3)

log z =
N
2

∫ 2(r−1)/N

2/N
log(1− y)dy ≈ 2r

N
− r2

N
(4.4)

Performing the integration and using this expression in Eq. 4.2 one has, for large N,

< r >=
2
N

+ (
√

N + 1/N)e1/N ∼
√

N (4.5)

4.3.2 Mechanism for large time behaviour of valley dynamics in IPS phase

In the limit of very long time, the H particle cluster will start moving around the system

diffusively and the valley will naturally move along with it. This mechanism has been il-
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lustrated in Fig. 4.5, which shows movement of an L particle through the H particle cluster.

When the L particle reaches the bottom of the valley, the deepest point undergoes a displace-

ment, along with the center of mass of the H particle cluster. Note that the time-scale for this

process is rather large because the probability that the L particle, starting from the H − L

domain boundary, reaches the bottom of the valley, is very low and decays exponentially

with the domain size (see our data in Fig. 4.6). As a result, the diffusivity of the valley in

this regime ∼ e−αN . Existence of an exponentially large time-scale breaks the translational

invariance of the system but the relaxation time-scale is still algebraic, as demonstrated in

Chapter 3.

(A) (B)

(C) (D)

(E) (F)

(G) (H)

Figure 4.5: Motion of the deepest point over ∼ eN time-scale. (A) Formation of a local hill at the right
edge of the H particle cluster. (B) The rightmost H particle slides down the hill and gets
detached from the cluster. (C) The resulting hill with L particle flips and another local hill
with H particle is formed at the adjacent site. (D) Another H particle slides down the hill
and detaches from the H cluster. (E) The L particle propagates down the valley. (F) At the
bottom of the valley a local hill with L particle is formed. (G) This local hill flips and the
deepest point of the valley shifts one site to the right. (H) The H particles to the left of
the deepest point slide down, one after another, moving the center of mass of the particle
cluster to one site to the right.
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Figure 4.6: The probability to find an L particle at the deepest point of the surface falls off as e−αN

with system size where α = 0.261. The data have been averaged over 106 histories.

4.3.3 Valley dynamics as an Ornstein-Uhlenbeck process in the IPS phase

Since any displacement of V away from C costs energy, which in turn gives rise to a restor-

ing force which is harmonic, the diffusive motion of V can therefore be described by an

Ornstein-Uhlenbeck process [58]. The corresponding Fokker-Planck equation in the contin-

uum description has the form,

∂tP(x, t) =
1
τ

∂x[xP(x, t)] + D∂2
xP(x, t) (4.6)

where P(x, t) is the probability to find V at a distance x away from C. The first term on

the right hand side represents the drift which can be positive or negative depending on the

sign of x. The parameter τ sets the time-scale which is related to the steepness of the simple

harmonic potential. We directly measure the drift term by measuring the bias experienced

by V at a position x. In our lattice model, this bias is defined as the difference between the

rightward and leftward hopping rate from that position. For a given value of x, we measure

the average waiting times T±(x) for V to move to position (x ± 1). The bias is given by

v(x) = [1/T+(x)− 1/T−(x)]. In Fig. 4.7a we plot the bias as a function of x and find that

its magnitude increases linearly. This finding establishes the simple harmonic nature of the

force field.

An alternative description of the above dynamics can also be given in terms of the random

variable δh, the height difference between V and C. In a single time-step, the value of δh may

change by one unit, or even two units (when the centre of mass is on a local hill which flips).

We measure the average waiting times T±n (δh) till δh changes by ±n units, with n = 1, 2

and calculate V(δh) = ∑n=1,2[n/T+
n (δh)− n/T−n (δh)]. We find that V(δh) increases linearly

with δh (see Fig. 4.7b). Note however, that by definition, δh can never cross the origin and
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Figure 4.7: Motion of V as an Ornstein-Uhlenbech process. (a): Velocity of V, when at a distance x
away from C, increases linearly with x. (b): C experiences a restoring bias, when at a height
δh above V and the bias increases linearly with δh. The data shown for 3 different system
sizes have been averaged over at least 104 initial histories.

become negative. Therefore, its motion can be described as an Ornstein-Uhlenbeck process

with reflecting boundary condition at the origin.

4.3.4 Scaling ansatz for dynamical correlation functions beneath the H-cluster in IPS phase

As shown in Fig. 4.3, there are several dynamical quantities associated with the fluctuations

in the landscape. We show that a single scaling form suffices to describe the mean-squared

fluctuation of all these quantities. To this end, we measure the mean-squared fluctuations

W(t, N) = 〈[Y(t)−Y(0)]2〉 (4.7)

as a function of time t, where Y(t) is a generic stochastic variable. Y(t) may denote the

position of the deepest point of the valley; or width of the H − L domain wall; or height

of the centre of H-cluster, etc. For each such quantity, our data show that W(t, N) grows

algebraically with time for small t, with a possible N-dependent co-efficient while for large t,

it saturates to an N-dependent value. More precisely, W(t, N) ∼ tα/Nν for small t, and ∼ Nγ

when t is large. The values of the exponents α, ν and γ of course depend on the particular

physical quantity Y(t) represents, but a single scaling form suffices to describe all the results:

W(t, N) ∼ NφF(t/Nz) (4.8)

The short and long time behavior of W imply that the scaling function F(x) ∼ xα for small

x and saturates to a constant at large x with exponents that are related through φ = γ and
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z = (γ + ν)/α. In Chapter 2, we have demonstrated that the dynamical exponent z which

describes the coarsening during approach to the steady state is 2 for both IPS and FPS phases.

In the IPS phase, the same value of z describes steady state dynamics as well. However, as

we shall demonstrate shortly that in the FPS phase, while the typical time-scale for relaxation

towards the steady state ∼ N2, the typical time-scale for steady state dynamics ∼ N3/2.
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Figure 4.8: Scaling collapse of dynamical correlation functions in IPS phase. The scaling argument
is t/Nz with dynamical exponent z = 2. For small argument, the scaling function grows
as a power law with an exponent α. (a): For σ2

0 (t) we find φ = 1, α = 1. (b): Scaling
collapse of ∆2(t) shows φ = 1, α = 1. (c): For δ2

CM(t) best collapse is obtained for φ = 0.94
and α = 0.82. The maximum error bar in these exponent values are ±0.02. All data are
averaged over at least 104 initial histories.

4.3.5 Landscape dynamics beneath the L-cluster in the IPS phase

In the previous subsections, we discussed the dynamics of the ordered part of the landscape,

in the region occupied by H particles. The landscape beneath the L-cluster is disordered in

both the IPS and FPS phases. In this part the dynamics of the landscape actually corresponds

to that of an open-chain exclusion process, on mapping the upslope bonds to particles and

the downslope bonds to holes. For an IPS phase, in the language of particles and holes, in

the L-region the dynamical rules (see Eq. 2.2) are those of a symmetric exclusion process

(SEP) [50]. The ordered domains of upslope and downslope bonds in the H-region then act

as reservoirs of particles and holes that are present at the two ends of the macroscopic SEP

segment, and drive a current through it. Earlier studies on an open-chain SEP [50] show that

the density profile of particles shows a linear gradient ∼ 1/N which supports a diffusive

current ∼ 1/N in the system. We have verified both these predictions in Chapter 3.

To carry the correspondence with the open system further, we also compare the dynamical

correlation functions in our system with that of an open-chain SEP. The auto-correlation

function of an upslope bond at a distance r away from the H− L domain boundary is shown

in Fig. 4.9a. The continuous line in this plot shows the result expected for open-chain SEP,
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where A(r, t) = ρ(r)(1−ρ(r))√
2π

t−1/2, with ρ(r) being the local density at a position r [59]. We find

a good agreement between this prediction and our simulation results. In Fig. 4.9b, we plot

the mean-squared displacement of a tagged upslope bond at a distance r from the H − L

domain boundary. This corresponds to the mean-squared displacement of a tagged particle

in an open-chain SEP and is expected to behave as σ2(r, t) =
√

2
π

1−ρ(r)
ρ(r) t1/2 [60], up to a time

t ∼ N2. Beyond this time, the tagged particle displacement becomes larger than the length

scale over which ρ(r) varies, and σ2(r, t) then shows a faster growth. Our data in Fig. 4.9b

shows this effect clearly.
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Figure 4.9: The correspondence between the L region in the IPS phase and an open-chain SEP. a:
Scaled auto-correlation function of an upslope bond at a distance r + L/4 from C, where
the average density of upslopes is denoted by S+(r). We plot ar(t) =

√
2π

S+(r)(1−S+(r)) A(r, t)

for 3 different r and show that it decays as t−1/2. The system size used is 2048. The
data shown here have been averaged over at least 106 initial histories. b: Tagged mean-
squared displacement of an upslope bond at a distance r + L/4 from C. We plot σ2

r (t) =√
π
2

S+(r)
1−S(r)

σ2(r, t) for 3 different values of r and show that it grows as t1/2. We have used

N = 512 here. These data have been averaged over at least 104 initial histories.

4.4 dynamics in the fps (finite current with phase separation) phase

For the FPS phase, the valley dynamics shows a different behavior from the IPS phase. In this

case, the landscape holding the H-cluster forms a macroscopic valley which has a rugged

bottom, while the part holding the L-cluster is flat (see Fig. 4.1). Although the deepest point

V of the valley still makes excursions around the centre of mass C of the H-cluster, this

motion is not diffusive as in the IPS phase. Our data show that σ2
0 (t) grows sub-diffusively

∼ t1/2. The sub-diffusive regime is observed after a large non-scaling regime but before

the saturation sets in, and is observable provided N is large enough. Our data show α =

0.5± 0.01, ν = −0.17± 0.02, γ = 0.92± 0.03, which yields z = 1.5, φ = 0.92 and a scaling
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function which grows with an exponent 1/2 close to the origin. The corresponding scaling

collapse is shown in Fig. 4.10a.
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Figure 4.10: Scaling collapse of dynamical correlation functions in FPS phase. In this case the scaling
argument is t/N3/2. For small argument the scaling function grows with a power α and
for large argument saturates to a constant value. (a): Data for σ2

0 (t) give φ = 0.92 and
α = 0.5. (b): For ∆2(t) we find φ = 1 and α = 0.67. (c): For δ2

CM(t) best collapse is obtained
for φ = 0.83 and α = 0.31. The maximum error bar is ±0.02. All these data have been
averaged over at least 104 steady state configurations.

Note that in the FPS phase, the valley is not as sharp as the one seen in IPS phase (see

Fig. 2.2). Instead of a single deepest point, the bottom of the valley is often rugged and may

contain more than one site with the minimum height. In our simulation, we have chosen

one such site and every time a random update causes the height of a site to fall below the

current minimum, we count it as a displacement of the deepest point. To verify that the value

of the exponent is not tied to the particular method of determining it, we also estimate the

exponent by monitoring the time dependence of the mean-squared displacement of a tagged

upslope bond that is situated at a distance r away from the centre of mass in the H region.

As shown in Fig. 4.11, this quantity also grows with the exponent 1/2, as did σ2
0 (t).

An important qualitative difference in the scaling form in IPS and FPS phase is the sign

of the exponent ν. While ν is positive for IPS phase, in the FPS phase we find ν < 0. This

implies that as N becomes larger, the growth of σ2
0 (t) with time becomes slower for IPS

phase, and faster for FPS phase. This difference can be related to the difference in the current

fluctuation properties. Note that for a general current-carrying system, in which the state

breaks translational invariance, the current fluctuations in steady state can be very different

in parts of the system, though the mean current is uniform. Indeed, we find the current

fluctuation at the bottom of the valley is very different from that measured in the middle

of the L-phase. The exponent ν is related to the fluctuation properties at the bottom of the

valley. We find that for an system in FPS phase, which carries a finite current, the current
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Figure 4.11: Tagged mean squared displacement σ2(r, t) of an upslope bond inside the H-cluster ini-
tially at a distance r from the deepest point shows a sub-diffusive behaviour and grows
as t1/2. Here, we tag an upslope bond at a distance N/16 from the deepest point and
show the plots for 3 different N values. We observe an initial non-scaling behavior for
t . 100 where the growth is steeper. These data have been averaged over at least 105

initial configurations.

fluctuation at the valley bottom grows with N (see Fig. 4.12). By contrast in the IPS phase,

where current ∼ 1/N, its fluctuations get smaller as N increases (Fig. 4.12). This ties in with

the different signs of ν in the two phases.

4.4.1 Height fluctuations induced by valley dynamics in FPS phase

In the FPS phase, ∆2(t) grows sub-diffusively with time with an exponent 2/3 (Fig. 4.10

b), which is different from the exponent 1/2 measured for the mean-squared displacement

σ2
0 (t) of V. Note that due to the rugged structure at the bottom of the valley in this case,

every movement of V may not yield a corresponding change in the value of ∆h. See Fig.

4.13 for a specific illustration of this point. This means that unlike IPS phase, here we do not

have a one to one correspondence between the dynamics of V and ∆h. The two distinctly

different exponents observed in Figs. 4.8 and 4.10 reflect this difference. For δ2
CM(t), we find

α = 0.31± 0.02, ν = −0.36± 0.02, γ = 0.83± 0.03 and z = 3/2 (Fig. 4.10c).

In the FPS phase, the valley motion cannot be described in terms of an Ornstein-Uhlenbeck

process. This is not surprising, in view of the sub-diffusive nature of the valley dynamics

(an underlying Ornstein-Uhlenbeck process would have yielded a diffusive motion of the

deepest point). Indeed, Fig. 4.14 shows that the bias experienced by V when it is at a height

δh below C, grows sub-linearly with δh.
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V(t)〉 = 〈[(hV(t)− hV(0))− vt]2〉 in the IPS and
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system grow with the system size. These data have been averaged over at least 104 initial
histories.
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Figure 4.13: We explicitly illustrate that it is possible for the deepest point in an FPS phase to move
without causing any change in the height difference between the edges of the H-cluster.
Figs (a), (b), (c), (d) show time-evolution of a local configuration. We find that the finite
fraction of impurities present within the majority up(down)-slope domains causes the
deepest point to shift without causing any change in the heights of the right (iR) and
left(iL) edges of the H cluster.

4.4.2 Landscape dynamics beneath the L-cluster in FPS phase

In the FPS phase, a similar mapping of upslope (downslope) bonds to particles (holes) brings

out a correspondence with an open-chain asymmetric exclusion process (ASEP) in the max-
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Figure 4.14: Velocity of V when at a height δh below C has a non-linear dependence on δh in the FPS
phase. This motion cannot be described as an Ornstein-Uhlenbeck process, unlike IPS
phase. The data shown for 3 different system sizes have been averaged over at least 104

histories.

imal current phase [20]. In Chap. 3, we have explicitly shown that the density of upslope

bonds in the bulk of the L-region is 1/2 and near the H − L domain boundaries it shows

an algebraic variation, as expected in a maximal current phase. To carry out the correspon-

dence further, we measure the mean-squared displacement of a tagged upslope bond in the

L-region. Note that due to the presence of a kinematic wave [61], the density fluctuations in

an ASEP with density ρ possess a relative velocity with respect to the individual particles.

To probe how a particular density fluctuation decays with time, one needs to measure the

tagged mean-squared displacement of a particle with a ‘sliding tag‘ that keeps changing

with time . The amount of ‘slide‘ in the tag accounts for the relative motion of the tagged

particle with respect to the density fluctuations. In [62, 63] this method was employed for

an ASEP with periodic boundary conditions. In our work, we generalize this method for an

open system and find that the tagged mean-squared displacement of an upslope bond grows

with time with an exponent close to 2/3, as expected for an ASEP (see Fig. 4.15).

In the stationary state of an ASEP, the drift velocity (vp) of the individual particles is given

by J/ρ, where J, ρ are particle current and density respectively. Besides this, the velocity (vk)

with which the coarse-grained density fluctuations are transported throughout the system is

given by ∂J
∂ρ and is called the kinematic wave velocity [61, 64]. Hence, in the rest frame of the

density fluctuations, the particles move with velocity vp − vk. In order to capture the correct

dynamical exponent with which the mean squared fluctuation in the position of a tagged

particle in the maximal current phase grows, we take recourse to the method of sliding tags

[62, 63]. For an ASEP with open boundaries, due to finite rates of injection (ejection) at the

boundary sites, the tags of the particles keep changing with time. To take this into account,

one may consider a segment of length l sufficiently away from the boundaries within the
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bulk and within this segment, tag all the particles at t = 0. Due to hard-core repulsion, none

of these can cross each other. We measure the following quantity:

Λ2(t) = 〈[y(m′, t)− y(m, 0)]2〉 − 〈[y(m′, t)− y(m, 0)]〉2 (4.9)

where, m, m′ are particle tags related by m′ = m − ρut, {y(m, t)} give the locations of the

particles at time t and u = vp − vk. Here, ρ = 1/2 as the segment is in the maximal current

phase [20]. The angular brackets denote averaging over both initial histories and stochastic

evolution. By carrying out this measurement until the tagged particles approach the bound-

aries of the segment of length l, one finds Λ2(t) ∼ t2/3. On the contrary, if one measures

the mean-squared displacement σ2 of a tagged up-slope bond without incorporating the tag

shift, one observes diffusive behaviour (see Fig. 4.15 inset).
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Figure 4.15: Main plot shows the sliding tag correlation function Λ2(t) for an upslope bond initially
in the maximal current phase and find that it grows as t0.67. Inset shows the variance
σ2(t) of a tagged upslope bond in the same phase. When the relative shift between the
tagged bond and the density patches is not taken into account, measurement of the
tagged mean squared displacement does not capture the correct dissipation and shows a
diffusive behaviour. We have used N = 1024, 2048 here. We have taken the density of H
particles to be 1/2 and hence the length of the open chain in maximal current phase is of
length N/2. These data have been averaged over at least 103 initial histories.

4.5 conclusion

Our study of the dynamical properties of a strongly coupled system of heavy and light

particles on a fluctuating landscape has focused on the phase separated states that result

when linear hydrodynamics predicts that the homogeneous system is unstable. As detailed
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in Chapter 2, there are several different phases which arise as coupling constants are changed.

The dynamics of two such ordered phases (SPS and FDPO) have already been studied in [24,

25] and [51] respectively. In this chapter, we have chosen to focus on the IPS and FPS phases.

Their dynamic properties reflect some similarities and some differences.

Perhaps the single most striking feature is the existence of two very different time scales

for the particles and the landscape in steady state, despite the strong coupling between

them. Movement of the centre of mass of the macroscopic H cluster occurs on a time scale

which grows exponentially with system size, ∼ exp(αN), whereas landscape fluctuations

involve power law growths up to a time ∼ Nγ. This dichotomy can be traced to the fact that

the disordered landscape beneath the L cluster generates slope fluctuations, which reach

the valley bottom and cause it to undulate, without a concomitant shift of the particles

themselves. Interestingly, there is no such dichotomy in the coarsening properties of the

systems — as shown in our data in Chapter 3, the approach to the steady state is described

by the same power laws in time for both the IPS and FPS phases.

An interesting aspect of the coexisting phases in both cases is that their properties relate to

well-known paradigms in the field, on employing a particle-hole description of the landscape

slopes in the L region. Thus, in the IPS we have effectively an open simple exclusion process

(SEP), with boundary conditions which set up a gradient and cause a current to flow. In

the FPS, the corresponding particle-hole model is the asymmetric simple exclusion process

(ASEP), in the maximal current phase. The currents carried in both cases translate into a

bodily downward movement of the interface, resulting in a velocity which is O(1/N) for the

IPS and O(1) for the FPS.

Although we have attempted to be exhaustive and to rationalize the observed results to

the extent possible, some mysteries remain. First, why is the dynamic exponent z = 2 in

the coarsening regime of the FPS, whereas in steady state, it has the value 3/2, as expected

on the basis of the ASEP analogy? Secondly, why is ν negative in the FPS phase? We have

pointed out a possible correlation between this and enhanced current fluctuations at the

valley bottom, but it would be desirable to make this connection stronger.
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5
L H M O D E L I N T W O D I M E N S I O N S — S Q U A R E A N D T R I A N G U L A R

L AT T I C E G E O M E T R I E S

5.1 introduction

In this chapter we discuss results on our particle-landscape model in two dimensions for

different lattice geometries. We address two important questions here: (a) Does the phase

diagram shown in Fig. 2.1(see Chapter 2) remain valid for all particle densities even in

two dimensions? (b) Does the phase diagram remain robust for different kinds of lattice

symmetries? If so, how do the topologies and the shape of the boundaries of the different

ordered regions change for different lattice geometry? We find that the qualitative nature of

the phase diagram remains valid for different lattice geometries in two dimensions. However,

there are strong finite size effects that happen to manifest themselves in two dimensions.

For small system sizes, one encounters different types of height topologies in the surface

beneath the particle cluster. For large system sizes, however, one can numerically observe

only a single kind of topology. We present a simple scaling argument that rationalises that

in the thermodynamic limit, only a single type of configuration should survive. We present

our model and results for two dimensional square and triangular lattice geometries. Part of

results discussed in this chapter have been published in [47–49].

5.2 results on a two dimensional square lattice

The surface in two dimensions is simulated through a discrete solid-on-solid algorithm,

where the height difference between the nearest neighbors on a square lattice is maintained

at ±1. Let h(i, j) denote the height of the site (i, j) on the lattice. This site is said to be on a lo-

cal hill, if all its four neighbors with coordinates (i± 1, j) and (i, j± 1) have height h(i, j)− 1.

Similarly, the site (i, j) is said to be in a valley when the neighbors have height h(i, j) + 1. The

two dimensional surface evolves in time by switching between the hills and the valleys [65].

In our model, a site is selected at random. If it is on a hill, then it can flip to a valley when its

height gets reduced by two units. This flipping rate is (E + b) when the site is occupied by
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an H particle and (E− b′) when it is occupied by an L particle. Similarly, if the chosen site

happens to be in a valley, then its height can increase by two units and it becomes a hill. The

switching rate in this case is (E− b) when an H particle is present, and (E + b′) when an L

particle is present. For updating the particles, we select a bond (horizontal or vertical) of the

square lattice. If the two sites adjacent to the bond are occupied by two different species of

particles, then their positions are exchanged with rate (D + a) if after the exchange, height

of the H particle decreases. The reverse exchange occurs with rate (D− a).

5.2.1 Fast coarsening to IPS and FPS phases on a square lattice

The properties of the phases discussed in Chapter 2 remain qualitatively valid in two dimen-

sions. The H and L particles form compact clusters. The shape of these two dimensional

clusters depends on the topography of the surface heights. For small system sizes, we ob-

serve an interesting finite size effect that gives rise to two different surface geometries which

we discuss in the next section. The relaxation time-scale to the IPS and FPS phases remain

algebraic on a two-dimensional square lattice which we confirm by measuring the two-point

density-density correlations between the H-particles (see Fig. 5.1).
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Figure 5.1: Scaling of particle density correlation in the coarsening phase on a two dimensional square
lattice. The equal time density correlation for the particles C(r, t) shows a collapse when r
is scaled by L(t) ∼ t1/z. (a) and (b) show scaled data for b = 0.5, b′ = 0 and b = 0.3, b′ =
−0.2 respectively. For IPS phase, z ' 2 and FPS phase shows z ' 2.6. We have used
N = 256× 256 here.

5.2.2 Finite size effects in topologies on a square lattice

For numerical simulations, we start with a flat initial configuration of the surface and ran-

dom configuration for the particles and evolve the system in time, following the algorithm
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described above. The phases obtained in this case are similar to those in one dimension.

In the ordered phases, the H and L particles undergo complete phase separation and the

landscape beneath the H cluster orders to form a deep valley. In the SPS phase, the entire

landscape is ordered to form a deep valley accommodating the H-cluster at the bottom of it.

In the IPS phase, the landscape beneath the L-region shows a linear variation of height along

x or y direction, while in the FPS phase it is disordered. Inside the valley, as the deepest

point is approached from both x or y directions, the height decreases and this means that

the equal height contours have diamond-like shape. Using an analysis very similar to that

discussed in Sec. 3.4.3, one can explain the clustering of H-particles in the IPS phase.

However, for IPS and FPS phases we have also encountered another type of configuration

on a two dimensional square lattice, where instead of a single point with minimum height,

the surface develops a line of such points and the shape of the surface looks like a ‘trench’

or ‘wedge’ (see Fig. 5.2). Through extensive numerical simulations we have also verified that

such configurations are results of finite size of the system and for larger systems we only

find diamond-shaped contours. The simple calculation presented below lends support to

this finding.
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Figure 5.2: Representative plots for diamond and wedge type configurations in the IPS phase in two
dimensions on a 64× 64 square lattice. In (a) and (c), H(L) clusters are shown in red(blue),
while (b) and (d) show the equal-height contour plots.

The total gravitational energy of H-particles is ∑ij nijh(i, j), where nij is the H-particle oc-

cupancy at site (i, j), and h(i, j) is the height at that site measured from the flat (or logarith-
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mically rough) part of the landscape, in the L-region. Note that when equal height contours

are diamond shaped, then the number of sites with a given height h above the minimum

equals 4h. For a perfectly ordered configuration, the H particles fill the landscape upto a

certain height level h0 above the minimum. Thus the total number of sites occupied by H

particles is,

1 + 4
h0

∑
h=1

h = ρN2 (5.1)

where ρ is the density of H-particles. It follows from this relation that h2
0 ≈ ρN2/2. The

number of H particles at a height j below the maximum occupied level is 4(h0 − j) and

hence the total energy becomes,

ED = −4
h0−1

∑
j=0

(h0 − j)j− h0 = −2
3

h0(h0 + 1)(h0 − 1)− h0 ≈ −
2
3
(

ρ

2
)

3/2
N3 (5.2)

to the leading order in N. For a wedge-shaped surface, on the other hand, the equal-height

contours are horizontal or vertical lines, running parallel to the line of height minima. The

number of sites with a given height h in this case is 2N and the highest occupied level h0 in

this case is ρN/2. This gives the total energy of H-particles in a wedge-like arrangement as,

EW = −ρ2N3

4
− ρN2

2
≈ −ρ2N3

4
(5.3)

to leading order in N. For large N, it follows from Eqs. 5.2 and 5.3 that ED < EW unless ρ

is very high (ρ & 0.89). In our simulations, we mainly consider ρ . 1/2 and for our case

diamond-like arrangements are energetically more favorable for large systems. It will be

interesting to study the limit ρ & 0.9 to see if wedge-shaped configurations survive even for

large N.

5.3 steady state dynamics on a square lattice

In this section, we present our simulation results on the dynamical correlations in the two-

dimensional model defined in Sec. 5.2. Algebraically fast time scales in relaxation and steady

state dynamics of the landscape are observed in the IPS and FPS phases in two dimensions

as well. We monitor the mean squared displacement of the deepest point in the valley along

the x and y directions in the IPS and FPS phases (Fig. 5.3a, b).

We find that in the IPS phase, at short times t � N, the valley moves diffusively with

the diffusion constant ∼ 1/N. The mean squared displacement then saturates at a finite

value of order 1 until at large times it again starts growing diffusively, but with a diffusion
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Figure 5.3: Landscape dynamics in two dimensions. (a) Mean squared displacement σ2(t) of the deep-
est point of the valley along the x-direction as a function of time for three different system
sizes, 24× 24(solid line), 32× 32(dotted line), 40× 40(dashed line) in the IPS phase. Top
and bottom insets show the short and large time diffusion constants D1 ∼ 1/N and
D2 ∼ e−αN where α = 0.25. (b) σ2(t) in the FPS phase for 4 different system sizes. While
the initial growth and saturation does not show any dependence on the system size, the
large time diffusivity falls off exponentially as the system size (data not shown here). (c)
The height fluctuation Σ2(t) as a function of time in the part of the surface holding the
L cluster in IPS phase. The fluctuations grow logarithmically in time as is characteristic
of an Edwards Wilkinson surface in two dimensions. (d) Σ2(t) in the FPS phase shows
a sub-diffusive regime that remains valid upto t ∼ 100. This is followed by a diffusive
growth at large times with the diffusion constant falling off as a power law ∼ N−1.5.

constant ∼ e−αN . In the FPS phase, we monitor the same quantity and find that it grows sub-

diffusively and saturates at a finite value. At large times ∼ eαN , the valley performs diffusive

motion with an exponentially small diffusion constant.

We also measure height fluctuations (Σ2(t)) in the part of the surface occupied by the L

particles and find that it shows a logarithmic growth for the IPS phase and a diffusive growth

in the FPS phase with a diffusion constant ∼ N−1.5 (see Fig. 5.3c, d). Note that, while in the

IPS phase, the surface beneath the L-cluster shows the logarithmic behaviour characteristic

of an Edwards Wilkinson surface [66], in the FPS phase, there is a clear deviation from

the behaviour of usual Kardar-Parisi-Zhang surfaces where one expects Σ2(t) ∼ t2β with

β ' 0.23 [67].
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5.4 results on a two dimensional triangular lattice

The LH model can be simulated on a two dimensional triangular lattice using similar update

rules as described in Sec. 5.2. However, since the triangular topology allows for 6 nearest

neighbours, the definitions of hills and valleys are different from that on a square lattice.

The height update rules for the surface is described as follows. Let h(i, j) denote the height

of the site (i, j) on the triangular lattice. This site is said to be on a local hill, if the averaged

height of all its six neighbors with coordinates (i ± 1, j),(i, j± 1), and (i ± 1, j± 1) is lower

than h(i, j). Similarly, the site (i, j) is said to be in a valley when the averaged height of all the

neighbors is higher than h(i, j). The two dimensional surface evolves in time by switching

between the hills and the valleys as described earlier. While on a square lattice, the flipping of

hills into valleys and vice versa conserves the height difference between each of the nearest

neighbours, the same might not always be true for the dynamics on a triangular lattice.

Similarly as on a square lattice, we start with a flat initial condition for the height profile of

the surface and a randomly distributed particle profile. At first a site is selected at random.

If the site (i, j) is on a hill, then it can flip into a valley, provided the magnitude of height

difference between all the nearest neighbours after the flip never exceed unity — it can

assume only three values 1, 0,−1. This flipping rate is (E + b) when the site is occupied by

an H particle and (E− b′) when it is occupied by an L particle. Similarly, if the chosen site

happens to be in a valley, then the switching rate is (E− b) when an H particle is present,

and (E + b′) when an L particle is present. For updating the particles, we select a bond of

the triangular lattice. If the two sites adjacent to the bond are occupied by two different

species of particles, then their positions are exchanged with rate (D + a) if the height of the

H-particle decreases after the transition. The reverse exchange occurs with a rate (D− a). If

the height difference across the chosen bond is zero, the particles diffuse with a rate D.

5.4.1 Finite size effects in topologies on a triangular lattice

We find that similar to our observations on a square lattice, the phase diagram shown in Fig.

2.1 qualitatively holds true for a triangular lattice. However, on a triangular lattice, we have

encountered three different topologies for IPS and FPS phases with equal height contours

looking like hexagons, wedges, and triangles. We show the top views of the particles clus-

ters and the equal height contours in Fig. 5.4. Similarly as in Sec. 5.2.2, we show a scaling

calculation for energies of the different topologies obtained on a triangular lattice.

Following the arguments presented in Sec. 5.2.2, we calculate the energies for perfectly

ordered hexagonal and triangular topologies obtained on the triangular lattice. For a perfect

hexagonal topology, the number of sites at a given height h above the minimum is 6h. Hence
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Figure 5.4: Representative plots for hexagonal, wedge, and triangular type configurations in the IPS
phase in two dimensions on a 100× 100 triangular lattice for three different densities. The
left panels show the H(L) clusters in red(blue), while the right panels show the equal-
height contour plots.

the total number of sites ρN2 occupied by H particles is 1 + 6 ∑h0
h=1 h, which yields h2

0 ≈
ρN2

3

for large N. The total energy for a perfectly hexagonal topology is hence,

EH = −6
h0−1

∑
j=0

(h0 − j)j− h0 = −(ρN2

3
)

3/2

− ρN2

3
≈ −(ρ

3
)

3/2
N3 (5.4)

For a perfect triangular topology, on the other hand, the maximum height h0 ≈ 2
9 ρN2 and

the energy is given by,

EH = −9
h0−1

∑
j=0

(h0 − j)j− h0 ≈ −
3
2
(

2
9

ρ)
3/2

N3 (5.5)

The above calculation predicts that for low densities (. 0.6), EH < EW < ET, i.e., the

hexagonal topologies will be favoured over the wedge and triangular topologies. In our

simulations, we indeed find that for low densities (∼ 0.1), the equal height contours look
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like hexagons. However, for densities 0.2 < ρ < 0.3 we encounter wedge phases and beyond

that, we find triangular topologies for 0.3 < ρ < 0.5 even for a 200× 200 triangular lattice.

Our scaling calculation for energies of different topologies ignores boundary contributions

from the particle clusters and assumes that beyond h0, the surface is perfectly flat. This

might be a reason why for high densities our scaling argument fails to match the numerical

simulations. A good agreement might be observed at really large system sizes which have

not been possible for us to access.

5.5 conclusion

To conclude, we have studied the two-way coupled particle-landscape model in two dimen-

sions for two different types of lattice geometries — square and triangular. Although the

qualitative nature of the phase diagram 2.1 remains same in two dimensions as well, we

encounter several types of topologies that occur in finite size systems. We present a scaling

argument which shows that in the thermodynamic limit there should be a single type of

topology that is energetically favoured. Our numerical simulations for a square lattice con-

firm that for large system sizes, indeed the diamond type of configuration survives because

of having the lowest energy. However, on a triangular lattice, the finite size effects seem

stronger and for the largest possible system size that we could access numerically, the en-

ergetically less favourable configurations (e.g. wedge and triangular shaped configurations)

continue to appear. It is possible that a much larger system size is required to verify our

analytical prediction in this case.
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6
N U M E R I C A L V E R I F I C AT I O N O F M O D E - C O U P L I N G T H E O RY A N D

N O N - L I N E A R F L U C T U AT I N G H Y D R O D Y N A M I C S F O R

P R O PA G AT I N G M O D E S I N L H M O D E L

6.1 introduction

In this chapter, we study the disordered phase of the LH model (see Fig. 2.1). In characteris-

ing this phase, we are particularly interested in how the coupled time-evolution of particle

density and landscape height gradient gives rise to different dynamical universality classes

in the system, following the prescription of NLFH (see Sec. 1.2). However, unlike most NLFH

studies so far, the exact steady state measure is not known for our system. In this phase, the

coupling between the particles and the landscape is such that there is no long-ranged order

in the particle or the landscape. However, there are still short-ranged correlations present

in the system whose closed-form expressions are unknown. Therefore, in this case we are

not able to write down exact expressions for the locally conserved currents in terms of

the conserved densities which is required for carrying out the formalism of NLFH along

with mode-coupling analysis (see Sec. 1.2). We rely on approximate expressions based on

mean-field theory where we neglect all correlations in the system or a slightly improved

approximation where we retain some nearest neighbor or next nearest neighbor correlations

and ignore the rest. We develop a scheme for calculating currents based on such approxima-

tions and use those approximate expressions for current to carry out the analysis of NLFH

and derive the conditions for observing different dynamical universality classes. Finally, we

check our analytical predictions with numerical simulations. An important aspect that one

has to keep in mind for this approach is presence of finite size effects. The scaling solution

obtained from NLFH implicitly assumes the limit of large system size and large times. As we

will show in the subsequent sections of this chapter, the numerical simulations involve mea-

surement of space time correlations of the conserved modes and use the method of scaling

collapse to verify the universality class. Clearly, finite size effects can play an important role

here and may even mask the actual universality class which is expected to manifest itself in

the scaling limit. In this work we perform a systematic analysis of the finite size effects and
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explicitly demonstrate how it affects the conclusions. We also discuss how the criteria for

observing different universality classes obtained from NLFH needs to be modified in view

of finite size effects. The results discussed in this chapter are part of a manuscript under

preparation [68].

6.2 short-ranged correlations and mean-field calculation in the disor-

dered phase

Fig. 2.1 shows the phase diagram for the LH model in the complete parameter range of b, b′

that holds true for all values of ρ on an untilted surface (m = 1/2). Starting from the mean

field expressions for the current, a linear stability analysis of the continuity equations for

the two conserved fields predicts the b′ = −b line as the boundary between ordered and

disordered phases for m = 1/2 [47]. In the disordered phase, neither the particles nor the

landscape show any long ranged order and in this chapter, we focus on the disordered phase

(dotted region in Fig. 2.1). Although in the disordered phase, the landscape and the particles

do not have long ranged order, there are short ranged correlations present in the system. In

Fig. 6.1 we show the nearest neighbor corrrelations beween the particles and the tilts. Let ηi

be the occupancy variable for H particle at site i, which takes the value 1 (or 0) if the site i

is occupied by an H (L) particle. Similarly, let σi denote the tilt variable which is 1 (0) if the

bond between sites i and i+ 1 is upslope (downslope). We measure the four nearest neighbor

correlations 〈ηiηi+1〉 (Fig. 6.1, top left panel), 〈ηiσi〉 (Fig. 6.1, top right panel), 〈σi−1ηi〉 (Fig.

6.1, bottom left panel), and 〈σiσi+1〉 (Fig. 6.1, bottom right panel) in steady state for different

values of b and b′ within the disordered phase. From our dynamical rules in Eqs. 2.1 and 2.2

it follows that by interchanging between H and L and between b and b′, the model remains

invariant. All correlations are therefore symmetric around the line b = b′ that bisects the

disordered phase.

From Fig. 6.1, we observe that 〈ηiηi+1〉 correlations are strongest. Therefore, any mean-

field level approximation will be affected most by this nearest neighbor correlation among

the H particles and we look for some parameter regime where this correlation is weak, in

order for mean-field theory to work. All four correlations are also negligible near the bottom

left corner of the phase diagram. The corner point b = b′ = −0.5 has been studied earlier

in [17] and it was shown that the system satisfies exact product measure in this case with

pairwise balance [57]. In the vicinity of this point, all correlations are weak and mean-field

theory is expected to work well in this neighborhood.
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Figure 6.1: We plot nearest neighbor correlations in the disordered phase for m = 1/2. The top left
panel shows the data for 〈ηiηi+1〉 − ρ2, top right panel corresponds to 〈ηiσi〉 − ρm, bottom
left panel 〈σiηi+1〉 − ρm and bottom right panel 〈σiσi+1〉 − m2. The plots are color-coded.
Out of all these four correlations, particle-particle correlations are strongest while the
surface bonds show weak anti-correlations. All four correlations vanish at b = b′ = −0.5
point which satisfies product measure. Here, we have used N = 2000 and ρ = 1/2 and all
data have been averaged over 105 histories.

Starting from the dynamical rules in Eqs. 2.1 and 2.2 one can write down the following

formal expression for the average particle current Jρ and tilt current Jm in the system,

Jρ = (D + a)P(H\L) + (D− a)P(H/L)

− (D + a)P(L/H)− (D− a)P(L\H)

Jm = (E + b)P(/H\) + (E− b′)P(/L\)

− (E− b)P(\H/)− (E + b′)P(\L/) (6.1)

where, P(H\L) denotes the probability of a configuration that has an HL pair in two adjacent

lattice sites connected by a downslope bond (\). Similarly, P(/H\) denotes the probability

to have an occupied local hill. All other terms in Eqs. 6.1 may be defined in the same manner.

Within mean-field approximation, these joint probabilities can be factorized. For example,

P(H\L) can be written as ρ(1 − m)(1 − ρ), and P(/H\) becomes mρ(1 − m), and so on.

Here, ρ denotes the density of H particles and m denotes the density of upslope bonds

in the system. The average currents can thus be written as Jρ = 2aρ(1 − ρ)(1 − 2m) and

Jm = m(1 − m)[2ρ(b + b′) − 2b′]. Assumption of local equilibrium means when ρ and m
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varies in space and time, local currents can still be obtained by substituting ρ(x, t) and

m(x, t) in these expressions. We apply the formalism of NLFH illustrated in Sec. 1.2 starting

with this expression for local currents and calculate the two mode-coupling matrices.

Our mean-field calculations correctly predict the b = −b′ line as the boundary between

the ordered and disordered phase for m = 1/2 (Fig. 2.1) [48]. Using the above mean-field

expessions for Jρ and Jm, we can write down the Jacobian A and its eigenvalues for m = 1/2

are λ = ±
√
−2aρ(1− ρ)(b + b′), which are real for b < −b′ and imaginary for b > −b′.

Imaginary eigenvalues mean linear instability in ρ(x, t) and m(x, t) grows in time and takes

the system to an ordered state with macroscopic inhomogeneity. On the other hand, real

eigenvalues mean traveling wave solution holds, as discussed in Sec. 1.2. Thus b = −b′ line,

marks the boundary between ordered and disordered phases. It is remarkable that mean-

field theory makes this prediction so accurately because our plots in Fig. 6.1 show that in the

vicinity of b = −b′ line correlations are particularly strong. We have checked that (data not

shown here) for m 6= 1/2 the prediction does not work so well.

A somewhat improved approximation over mean-field theory might be retaining two-

point or three-point correlations in the system and factorizing the rest. For example, P(H\L)

can be written as P(H\)(1− ρ) and similarly, P(/H\) = P(H\)m, etc. Here, we have re-

tained the correlations between a site and the next bond. These two-point correlations can

be evaluated by writing down master equations for the probabilities P(H/), P(H\), P(L/)

and P(L\) and (numerically) solving them in a self-consistent manner. An even better ap-

proximation can be obtained by retaining three point correlations like P(H\L) or P(/H\).
These three point probabilities can again be evaluated by writing down the corresponding

master equations and solving for steady state. However, our final conclusions are not so sen-

sitive to whether we neglect all correlations in the system as in mean-field theory, or include

two or three point correlations in our description. Using NLFH method (Sec. 1.2), when we

calculate the mode-coupling matrices G1 and G2, the condition of observing various univer-

sality classes depends on whether certain matrix elements are zero or non-zero. The actual

value of these matrix elements may differ slightly depending on the approximations used,

but that does not change the dynamical universality class. We carry out our analysis within

that region of the disordered phase, where correlations are weak (see Fig. 6.1) and we find

no significant difference based on our approximation scheme.

6.2.1 Calculating currents from nearest neighbor approximations — master equation for two-point

correlations

Objects appearing in the expression for Jρ are compound objects that can be formed out of

a site-bond-site combination, while those for the bond current Jm comprise of three-point
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objects formed in a bond-site-bond sequence. In this section, we will assume that mean field

approximation works well beyond two-point functions, i.e., we might express the probability

of occurrence of the configurations like P(H\L), P(/H\) as P(H\)(1− ρ) and P(H\)m re-

spectively, by retaining only the correlations between a site and the immediately next bond.

From the colour plots presented in Fig. 6.1, this approximation can be expected to work well

in the vicinities of the product measure point b = b′ where all the correlations are weak.

With this convention, we write the following master equations for the probabilities for the

four objects P(H\), P(L\), P(H/), P(L/). The master equations for these probabilities con-

sist of gain and loss terms that have 4-point probabilities like P(H\H/). Retaining only the

correlations between a site and its right adjacent bond, this probability can be represented in

the product form of two probabilities as, P(H\H/) = P(H\)P(H/). The system of coupled

non-linear differential equations so obtained can be solved numerically.

dP(H/)
dt

= (E− b)P(H\)P(H/) + (E + b′)P(H\)P(L/)

+ (E + b)P(H\)m + P(H\)P(L/) + P(L/)ρ− (E + b)P(H/)P(H\)

− (E− b′)P(H/)P(L\)− (E− b)P(H/)(1−m)− P(L/)P(H/)

dP(H\)
dt

= (E− b)P(H/)(1−m) + (E + b)P(H/)P(H\)

+ (E− b′)P(H/)P(L\) + P(H\)P(L\)− (E + b)P(H\)m

− (E− b)P(H\)P(H/)− (E + b′)P(H\)P(L/)− P(L/)P(H\)

− P(H\)(1− ρ)

dP(L/)
dt

= P(L/)P(H/) + (E− b′)P(L\)m + (E− b)P(L\)P(H/)

+ (E + b′)P(L\)P(L/)− P(L/)ρ− P(H\)P(L/)− (E + b)P(L/)P(H\)

− (E− b′)P(L/)P(L\)− (E + b′)P(L/)(1−m)

dP(L\)
dt

= (E + b′)P(L/)(1−m) + (E + b)P(L/)P(H\)

+ (E− b′)P(L/)P(L\) + P(H\)(1− ρ) + P(L/)P(H\)

− (E− b′)P(L\)m− (E− b)P(L\)P(H/)− (E + b′)P(L\)P(L/)

− P(H\)P(L\) (6.2)

Since the above set of equations are non-linear and have to be solved numerically, we

do not have an closed-form expressions for the currents. For calculating the mode-coupling

matrices for certain (ρ, m) sets one needs the knowledge of Jacobians and the Hessians con-

sisting of respectively the first and second order derivatives of the currents with respect

to the particle and tilt densities. Hence, it is required to have the current vs. density plots
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around those ρ, m values with as small resolutions as possible. In parts of the disordered

regime where all the nearest neighbor correlations are small in magnitude (lightly shaded

regions in Fig. 6.1) and this formalism works well, we solve these equations for 0 ≤ ρ, m ≤ 1

with spacing δρ, δm = 0.001 and obtain Jρ, Jm as a function of ρ, m. Later in this section, we

compare the numerically measured values for the steady state currents and wave speeds

with those obtained from solutions to the above equations for few values of b, b′, ρ, m.

6.2.2 Calculating currents from next nearest-neighbour approximations — master equations for

three-point correlations

We formulate master equations for all the possible 3-point quantities in the system, such as

P(H\L), P(/H\) etc. In order to solve the equations, we retain only the three point correla-

tions and apply mean theory for the objects beyond. A set of 16 master equations is needed

for describing the time evolution of all possible three-point objects in our model,

P ={P(H\L), P(L\H), P(H\H), P(L\L), P(H/L), P(L/H)

P(H/H), P(L/L), P(/H\), P(/L\), P(\H/), P(\L/),

P(/H/), P(/L/), P(\H\), P(\L\)} (6.3)

While decomposing higher-point objects such as P(/H\L/) that appear in the gain, loss

terms in the master equations for the three-point quantities, we use the convention that

retains the first three-point object and breaks up the rest using mean-field approximation.

For example, using this convention, one has, P(/H\L/) = (1− ρ)mP(/H\). This yields a
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linear set consisting of 16 master equations for the system which can be solved exactly. The

set of master equations obtained using the above convention is given as follows:

dP(H\L)
dt

= (1− ρ)(1−m)P(H\H) + (1− ρ)(1−m)P(H\L)

+ (E− b′)(1−m)P(L/H) + (E− b)(1− ρ)P(\H/)

− P(H\L)− (1− ρ)(1−m)P(L/H)− ρmP(H\L)

− (E + b′)mP(H\L)− (E + b)(1− ρ)P(/H\) (6.4)

dP(L\H)

dt
= P(L\H) + ρ(1−m)P(L/H) + ρmP(L\L)

+ (E + b)(1−m)P(L/H) + (E + b′)ρP(\L/)

− (1− ρ)(1−m)P(L\H)− ρ(1−m)P(H\L)

− (E− b)mP(L\H)− (E− b′)ρP(/L\) (6.5)

dP(H\H)

dt
= ρ(1−m)P(H\L) + ρmP(H\L) + (E + b)(1−m)P(H/H)

− (1− ρ)(1−m)P(H\H)− ρ(1−m)P(L/H)

+ (E− b)mP(H\H)− (E + b)ρP(/H\) (6.6)

dP(L\L)
dt

= (1− ρ)(1−m)P(L/H) + (1− ρ)(1−m)P(L\H)

+ (E− b′)(1−m)P(L/L) + (E + b′)(1− ρ)P(\L/)

− (1− ρ)(1−m)P(H\L)− ρmP(L\L)− (E + b′)mP(L\L)

− (E− b′)(1− ρ)P(/L\) (6.7)
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dP(L/H)

dt
= ρmP(L/L) + ρmP(L/H) + (E− b)mP(L\H)

+ (E− b′)ρP(/L\)− P(L/H)− ρ)mP(H\L)

− (1− ρ)(1−m)P(L/H)− (E + b′)ρP(\L/)

− (E + b)(1−m)P(L/H) (6.8)

dP(H/L)
dt

= P(L/H) + (1− ρ)(1−m)P(H/H) + (1− ρ)mP(H\L)

+ (E + b)(1− ρ)P(/H\) + (E + b′)mP(H\L)

− (1− ρ)mP(L/H)− ρmP(H/L)− (E− b′)(1−m)P(H/L)

− (E + b)(1− ρ)P(\H/) (6.9)

dP(H/H)

dt
= ρmP(H/L) + ρmP(H\L) + (E− b)mP(H\H)

+ (E + b)ρP(/H\)− ρmP(L/H)− (1− ρ)(1−m)P(H/H)

− (E + b)(1−m)P(H/H)− (E− b)ρP(\H/) (6.10)

dP(L/L)
dt

= (1− ρ)mP(L/H) + (1− ρ)(1−m)P(L/H)

+ (E− b′)(1− ρ)P(/L\) + (E + b′)mP(L\L)− ρmP(L/L)

− (1− ρ)mP(H\L)− (E− b′)(1−m)P(L/L)

− (E + b′)(1− ρ)P(\L/) (6.11)
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dP(/H\)
dt

= (E− b)P(\H/) + (E + b)ρ(1−m)P(/H\)

+ (E + b)(1−m)P(/H/) + (E− b′)ρ(1−m)P(/L\)

+ (E− b′)(1− ρ)(1−m)P(/H/)− (E + b)P(/H\)

− (1− ρ)P(/H\)− (1−m)P(L/H)− (E− b)ρmP(/H\)

− (E− b)ρ(1−m)P(\H/)− (E + b′)(1− ρ)mP(/H\)

− (E + b′ρ(1−m)P(\L/) (6.12)

dP(\H/)
dt

= mP(H\L) + ρP(\L/) + (E + b)P(/H\)

+ (E− b)ρmP(\H\) + (E + b′)ρmP(\L/)

− (E− b)P(\H/)− (E + b)ρ(1−m)P(\H/)

− (E + b)ρ(1−m)P(\H/)− (E + b)ρmP(/H\)

− (E− b′)(1− ρ)(1−m)P(\H/)− (E− b′)ρmP(/L\) (6.13)

dP(/L\)
dt

= (1− ρ)P(/H\) + (1−m)P(L/H) + (E + b′)P(\L/)

+ (E− b′)(1− ρ)(1−m)P(/L\) + (E− b′)(1− ρ)(1−m)P(/L/)

+ (E + b)(1− ρ)(1−m)P(/H\) + (E + b)ρ(1−m)P(/L/)

− (E + b′)P(/L\)− (E− b)ρmP(/L\)

− (E− b)(1− ρ)(1−m)P(\H/)− (E + b′)(1− ρ)mP(/L\)

− (E + b′)(1− ρ)(1−m)P(\L/) (6.14)

dP(\L/)
dt

= (E− b′)P(/L\) + (E− b)ρmP(L\L) + (E− b)(1− ρ)mP(\H/)

+ (E + b′)(1− ρ)mP(\L\) + (E + b′)(1− ρ)mP(\L/)

− (E + b′)P(\L/)− ρP(\L/)−mP(H\L)

− (E + b)ρ(1−m)P(\L/)− (E + b)(1− ρ)mP(/H\)

− (E− b′)(1− ρ)(1−m)P(\L/)− (E− b′)(1− ρ)mP(/L\) (6.15)
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dP(/H/)
dt

= ρP(/L/) + (E− b)ρmP(/H\) + (E + b′)(1− ρ)mP(/H\)

+ (E + b)ρmP(/H\) + (E− b′)ρmP(/L\)−mP(L/H)

− (E + b)ρ(1−m)P(/H/)− (E− b′)(1− ρ)(1−m)P(/H/)

− (E− b)ρmP(\H/)− (E + b′)ρmP(\L/) (6.16)

dP(/L/)
dt

= mP(L/H) + (E− b)ρmP(/L\) + (E + b′)(1− ρ)mP(/L\)

+ (E + b)(1− ρ)mP(/H\) + (E− b′)(1− ρ)mP(/L\)− ρP(/L/)

− (E + b)ρ(1−m)P(/L/)− (E− b′)(1− ρ)(1−m)P(/L/)

− (E− b)(1− ρ)mP(\H/)− (E + b′)(1− ρ)mP(\L/) (6.17)

dP(\H\)
dt

= (1−m)P(H\L) + (E− b)ρ(1−m)P(\H/)

+ (E + b′)ρ(1−m)P(\L/) + (E + b)ρ(1−m)P(\H/)

+ (E− b′)(1− ρ)(1−m)P(\H/)− (1− ρ)P(\H\)

− (E + b)ρ(1−m)P(/H\)− (E− b′)ρ(1−m)P(/L\)

− (E− b)ρmP(\H\)− (E + b′)(1− ρ)mP(\H\) (6.18)

dP(\L\)
dt

= (1− ρ)P(\H\) + (E + b)ρ(1−m)P(\L/)

+ (E− b′)(1− ρ)(1−m)P(\L/)

+ (E− b)(1− ρ)(1−m)P(\H/) + (E + b′)(1− ρ)(1−m)P(\L/)

− (1−m)P(H\L)− (E + b)(1− ρ)(1−m)P(/H\)

− (E− b′)(1− ρ)(1−m)P(/L\)− (E− b)ρmP(\L\)

− (E + b′)(1− ρ)mP(\L\) (6.19)

The closed form expressions for the three point quantities thus obtained by solving the

above equations are too long to be presented here. However, starting from the expressions

for currents using these probabilities in Eq. 6.1, one may then calculate the wave speeds and

obtain the mode-coupling matrices subsequently.

Below (see Table 6.1), we compare the numerical values of the currents and the wave

speeds with those obtained by solving the two and three-point master equations at differ-

ent parts of the phase diagram. Our comparisons show that the nearest neighbor and next

nearest-neighbor approximations yield good match with the numerically obtained values in

3rd-quadrant since Fig. 6.1 shows that the correlations are weak on and around the b = b′
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line. Although, when we calculate the speeds of the propagating modes using the first deriva-

tives of these currents with respect to ρ, m, we do not find a quite good agreement with the

numerically measured wave speeds (see Table 6.2).

b, b′ ρ, m Jρ Jm

Simulations 2-pt. 3-pt. MFT Simulations 2-pt. 3-pt. MFT

−0.3,−0.3 0.16, 0.203 0.073 0.0734 0.084 0.0798 0.0649 0.0626 0.0626 0.066

−0.4,−0.1 0.12, 0.26 0.0424 0.0421 0.056 0.0507 0.0117 0.0127 0.0167 0.0154

−0.1,−0.1 0.3, 0.3 0.0569 0.0684 0.089 0.084 0.0152 0.0137 0.0139 0.0168

−0.3,−0.3 0.89, 0.23 0.048 0.058 0.061 0.053 −0.0824 −0.085 −0.078 −0.083

Table 6.1: Comparison between particle and tilt currents measured in simulations and calculated from
2-point, 3-point master equations, and mean field theory. The error bar in the numerically
measured currents are ±0.00005.

b, b′ ρ, m λ1 λ2

Simulations Master equation MFT Simulations Master equations MFT

−0.5, 0 0.36, 0.5 −0.323 −0.36 (3 point) −0.339 0.323 0.305 (3 point) 0.339

−0.3,−0.5 0.56, 0.535 −0.421 −0.441(2 point) −0.442 0.465 0.441 (2 point) 0.444

−0.3,−0.3 0.89, 0.23 −0.563 −0.545 (2 point) −0.558 −0.139 −0.113(2 point) −0.116

−0.3,−0.5 0.895, 0.2 −0.612 −0.608 (2 point) −0.611 −0.136 −0.118 (2 point) −0.122

Table 6.2: We present a few comparisons between the numerically measured speeds which we esti-
mate from the moving peaks of the dynamical structure factors, speeds calculated using
the currents obtained by solving the master equations, and the mean field values. The error
bars in the numerically measured values of wave speeds are less than ±0.001.

6.3 simulation results for dynamical structure function

To verify the predictions from NLFH we measure the dynamical structure function Cαα(x, t) =

〈φα(0, 0)φα(x, t)〉 with α = 1, 2 in simulations and find out what value of the dynamical ex-

ponent zα (see Eq. 1.2) gives the best scaling collapse. We compare this zα with the one

predicted by our NLFH calculations. We find finite size effects can significantly affect the

value of zα. We first demonstrate this for the point b = b′ = −0.5, where product measure

holds and exact expressions for Jρ and Jm are available [54].
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6.3.1 Significant finite size effects for b = b′ = −0.5

Earlier studies for b = b′ = −0.5 have shown that for different values of ρ and m the system

can show KPZ and diffusive modes [54]. Let us consider the case for two KPZ modes, when

G1
11 and G2

22 both are non-zero. In this case, a dynamical exponent zα = 3/2 is expected and

(x−λαt)/t2/3, the scaling variable. In the top panel of Fig. 6.2 we present data for a particular

set of values for ρ and m for which G1
11 and G2

22 are non-zero but their values are not so large,

G1
11 = G2

22 ' −0.6. Plots 6.2(a), (b), and (c) show the scaling collapse for C11(x, t) for different

system sizes. We find strong finite size effects in the scaling collapse and although for large

systems N = 16000 the actual KPZ exponent is retrieved, there is significant deviation for

small values of N. On the other hand, in Fig. 6.2(d), (e), and (f) we show the scaling collapse

for C11(x, t) for another set of ρ, m values, for which G1
11 = −0.89, G2

22 = −0.51. The self-

coupling term for the first mode is now larger than before and in this case we find much

weaker finite size effect: for N = 4000 good agreement with KPZ exponent is obtained for

the first mode. Our data in Fig. 6.2 also shows that for smaller N values, the shape of the

master curve is not completely symmetric and the left tail is slightly longer than the right tail.

However, as N becomes larger the symmetry is restored, as expected for a Prähofer-Spohn

scaling function [46].

Let us analyse the reason behind strong finite size effects for smaller values of Gα
αα. In

Eq. 1.8 since Qαα is proportional to (Gα
αα)

2, when the self-coupling co-efficient Gα
αα has small

values, the third term on the right hand side of this equation also becomes small. In the

limit k → 0, this third term alone is expected to survive and the other terms should vanish.

However, for finite system size N the smallest possible value of k is 2π/N and it is possible

that if N is not so large, the diffusive and cross-coupling terms might become comparable

to the self-coupling term and affect the value of zα and the nature of the scaling function. In

this case, one needs to consider very large N values when k is small enough and the effect

of the diffusive and cross-coupling terms in Eq. 1.8 can be ignored. For larger value of Gα
αα,

the self-coupling term is already large, and the diffusive and cross-coupling terms can be

ignored even when N is not so large.

Hence, although NLFH predicts a KPZ universality class for non-zero self-coupling, in

order to numerically observe the same, it is not sufficient that Gα
αα is non-zero, it should also

have a sufficiently large value. Otherwise, finite size effects can become overwhelmingly

strong and the value of the dynamical exponent, as well as nature of the scaling function

may be significantly affected. Our data in Fig. 6.2 are for the product measure point, where

the exact expressions for currents are already available. However, this issue becomes even

more crucial when currents are not exactly known and approximate expressions are used in

NLFH analysis. In that case one must rely more heavily on numerics and it then becomes
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Figure 6.2: We show the collapse of dynamical structure functions S(x, t) at 3 different times for
system sizes N=500 (plot (a)), N=4000 (plot (b)), and N=16000 (plot (c)) corresponding to
the parameter set b = −0.5, b′ = −0.5, ρ = 0.3, m = 0.5 in the top panel. The G-matrix
elements for these parameter values are: G1

11, G2
22 = −0.6. From the scaling collapse of

the data at different times, we find the expected 1/z = 0.67± 0.005 for N = 16000. A
systematic decrease in the exponent is observed with decreasing system sizes — 1/z =
0.63± 0.01 for N = 4000 and 1/z = 0.58± 0.005 as the system size is decreased to N = 500.
The bottom panel corresponds to the parameter set b = −0.5, b′ = −0.5, ρ = 0.8, m = 0.6.
The G-matrix elements for these parameter values are: G1

11 ' −0.89, G2
22 ' −0.51. From

the scaling collapse of the data at different times, we find an exponent 1/z = 0.67± 0.005
for N = 4000 (plot (f)), 1/z = 0.66± 0.01 for N = 1000 (plot (e)), whereas, the value of
1/z decreases to 0.6± 0.005 as the system size is decreased to N = 500 (plot (d)). The data
shown in plots (a) and (d) have been averaged over 106 independent histories whereas
those shown in the (b),(c),(e), and (f) have been averaged over at least 105 initial histories.

even more important that the numerical observation of the scaling collapse is not plagued

by finite size effects. In the following subsections we show few such examples.
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6.3.2 KPZ and 5/3 Lévy mode

As discussed in Sec. 1.2 (Chapter 1), the condition for having α-mode in KPZ universality

class and mode β in 5/3 Lévy class is,

Gα
αα, Gβ

αα 6= 0, Gβ
ββ = 0

(6.20)

and it follows from our discussions in the previous subsection that both Gα
αα and Gβ

αα should

have large magnitude. We choose b = b′ = −0.3, a point where spatial correlations are

expected to be weak (see Fig. 6.1) and our approximate expressions for Jρ and Jm agree

reasonably well with currents measured in simulations (see Table 6.1). For this particular b,

b′ we plot the values of the diagonal elements of G1 and G2 in the ρ-m plane in Fig. 6.3.
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Figure 6.3: We show a contour map of all the four diagonal elements of the mode-coupling matrices
in ρ, m plane for b = −0.3, b′ = −0.3. The top left and right panels are plots corresponding
to G1

11, G1
22 respectively, while the bottom panels correspond to G2

11(left) and G2
22(right).

In our model it is possible to find several choices of ρ, m values for which Eq. 6.20 are
satisfied such that both the non-zero elements are sufficiently large in order to be possible
to verify a 5/3-Lévy mode numerically.

From this plot, we see that in the bottom-right region in the ρ-m plane, while G1
11 is small

in magnitude, G2
22 is large, and G1

22 is also moderately large which makes this region the

best possible choice for observing 5/3-Lévy universality class for mode 1 and KPZ class for

mode 2. We present our data in Fig. 6.4(a), (b) for ρ = 0.89 and m = 0.23. In plot 6.4(a),
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we show our simulation data for C11(x, t) and find the best collapse is obtained when the

shifted x-axis is rescaled with t0.58, which is close to the value 3/5 expected in this case. We

also compare the master curve with α-Lévy stable distribution where α = 1/0.58 = 1.72 and

find reasonably good agreement. In Fig. 6.4(b) we show the scaling collapse for C22(x, t) and

in this case we observe a dynamical exponent z2 = 3/2 and our master curve also matches

well with Prähofer-Spohn scaling function [46].

To demonstrate the finite size effect in this case, we now choose another point in the ρ-m

plane, ρ = 0.31 and m = 0.32. From Fig. 6.3 we can see that at this point G1
11 is large, G2

22

is almost zero but G2
11 is small. These values imply that while mode 1 is expected to show

good agreement with KPZ universality class, the observation of 5/3-Lévy universality class

for mode 2 may not be possible due to finite size effects. Indeed our data in Fig. 6.4(c),(d)

show that the scaling collapse for C11(x, t) has been obtained for 1/z1 ' 0.66, which is close

to KPZ exponent, but C22(x, t) shows a scaling collapse with z2 ' 2 which corresponds to

diffusive universality class, instead of z2 = 5/3. Even the master curve in this case matches

well with a Gaussian function which is the scaling function observed for a diffusive mode.

Alternatively, the self-coupling term for mode 2 being close to zero in this case, in Eq. 1.8

only the diffusive term and the cross-coupling term are present and due to small magnitude

of the cross-coupling term, the scaling behavior is dominated by the diffusive term. Our

choice of N = 16000 is not large enough to remove this strong finite size effect and it is

not numerically feasible to consider N much larger than this. We present a third scenario

for KPZ, 5/3-Lévy combination, where we choose a point in the ρ-m plane which is close to

one corner such that both ρ and m are high or low. We find in this case, although G1
11 and

G2
11 are significantly large and G2

22 is negligibly small, we do not find KPZ and 5/3-Lévy

universality classes. In Fig. 6.4(e), (f) we show our data. We do not yet have any analytical

arguments supporting this result.

6.3.3 Modified KPZ and diffusive mode

The condition for observing the α-mode in a modified KPZ class and β-mode in a diffusive

class is

Gα
αα, Gα

ββ 6= 0, Gβ
ββ = Gβ

αα = 0 (6.21)

This criterion can be satisfied for different set of b, b′ values. First we present our data for

b = b′ = −0.5 where product measure holds and exact expression for currents are available

[54]. In Fig. 6.5(a), (b) we present our simulation data for one particular choice of ρ and m

and from the mode-coupling matrix elements given in the figure caption, it is clear that for

the first mode we expect a modified KPZ behavior, while for the second mode we expect
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Figure 6.4: Dynamical structure factor S(x, t) for both the modes corresponding to b = −0.3, b′ =
−0.3, ρ = 0.89, m = 0.23 at three different times for system size N = 16000[(a) and
(b)]. The G-matrices for these parameter values can be obtained by solving master
equations for 2-point correlation functions: G1

11 = −0.06, G1
22 = −0.39, G2

22 = −1.01.
In this case, one expects 1/z = 0.6 for the first mode and 0.67 for the second. Col-
lapse of structure factors yield an exponent 1/z = 0.58 ± 0.01 for the first mode and
1/z = 0.67 ± 0.01 for the second. Structure functions have been compared with those
of standard 0.58−1Lévy-stable distributions and KPZ distributions respectively. Plots (c)
and (d) show the dynamical structure factor S(x, t) corresponding to parameter values
b = b′ = −0.3, ρ = 0.31, m = 0.32 where a 5/3-rd Lévy would have been expected for the
second mode [G1

11 = 0.512, G2
11 = 0.126, G2

22 = −0.003]. From the collapse of S(x, t), we
find 1/z = 0.66± 0.01 for the 1st mode and 1/z = 0.5± 0.01 for the second. We compare
our data with standard KPZ and Gaussian distribution functions. The data indeed shows
that the second mode belongs to a diffusive universality class. Dynamical structure fac-
tor S(x, t) corresponding to the parameter set b = b′ = −0.3, ρ = 0.915, m = 0.875 have
been shown in plots (e) and (f). Here, KPZ and 5/3-rd Lévy universality classes would
have been expected for the first and second mode from the G-matrix elements respec-
tively: G1

11 = −1.07, G2
11 = −0.431, G2

22 = −0.002. From the collapse of S(x, t), we find
z = 0.58± 0.01 for the 1st mode and 1/z = 0.5± 0.01 for the second. These data have been
averaged over at least 105 independent histories.

diffusive scaling. Fig. 6.5(a) shows the structure function for mode 1 which shows a good

scaling collapse for 1/z1 = 0.66, which is close to the expected value 2/3. However, our mas-
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ter curve fits rather well with usual Prähofer-Spohn scaling function, which is unexpected for

a modified KPZ universality class, where a different scaling function is expected. Fig. 6.5(b)

shows structure function of the second mode and as expected, it belongs to the diffusive

universality class.
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Figure 6.5: We show the dynamical structure factor S(x, t) corresponding to parameter values b =
−0.5, b′ = −0.5, ρ = 0.92, m = 0.93 for N = 16000 in the top panel. For this case, the
matrix elements are: G1

11 = 1.8, G1
22 = 0.6, G2

11 = 0.025, G2
22 = −0.076. From the collapse of

structure factors measured at different times, we find an exponent 1/z1 = 0.66± 0.01 (plot
(a)) for the first mode, whereas the second mode is diffusive, with 1/z2 = 0.5± 0.005 (plot
(b)). Dynamical structure factor S(x, t) corresponding to another set of parameter values
b = −0.3, b′ = −0.5, ρ = 0.12, m = 0.105 for N = 16000 is shown in the bottom panel.
For this case, the matrix elements are: G1

11 = 1.52, G1
22 = −0.5, G2

11 = 0.023, G2
22 = 0.004.

From the collapse of structure factors measured at different times, we find an exponent
1/z = 0.67± 0.01 for the first mode (plot (c)), whereas the second mode is diffusive, with
1/z = 0.5± 0.01 (plot (d)). The collapsed master curves in plots (a) and (c) match with
that of an usual Prähofer-Spohn scaling function. These data have been averaged over at
least 105 independent histories.

It is not clear why we fail to observe modified KPZ scaling in this case. From the values

of the mode-coupling matrix elements given in the caption of Fig. 6.5 we notice that the

self-coupling term G1
11 is almost thrice in magnitude than the cross-coupling term G1

22. So

it is possible that the cross-coupling is not felt so strongly and the mode shows usual KPZ

scaling. Since the exact form of the modified KPZ scaling function is not known, it might

also be possible that the functional form is not too different from the usual Prähofer-Spohn
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scaling function to be numerically able to distinguish between the two. We have extensively

searched in our parameter space but could not find any (b, b′, ρ, m) set for which Eq. 6.21

is satisfied, and Gα
αα is smaller than Gα

ββ. We show one example in Fig. 6.6, where we plot

the mode-coupling matrix elements in the ρ-m plane for one specific (b, b′) set. Although

Eq. 6.21 is satisfied for many (ρ, m) values, for each of them we find the self-coupling term

is significantly larger than the cross-coupling term. Our simulation data shows usual KPZ

scaling in this case also (see Fig. 6.5c).
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Figure 6.6: We show a contour map of all the four diagonal elements of the mode-coupling matrices
in ρ, m plane for b = −0.3, b′ = −0.5. The top left and right panels are plots corresponding
to G1

11, G1
22 respectively, while the bottom panels correspond to G2

11(left) and G2
22(right).

In our model it is possible to find several choices of ρ, m values for which Eq. 6.21 are
satisfied such that both the non-zero elements are sufficiently large in order to be possible
to verify a modified KPZ mode numerically.

6.3.4 Golden mean modes

Golden mean modes always occur in pairs, since the dynamical exponents zα and zβ satisfy

the conditions zα = 1 + 1/zβ and zβ = 1 + 1/zα, whose recursive solution yields zα = zβ =

(
√

5 + 1)/2. In our system there are only two modes and hence both C11(x, t) and C22(x, t)

should show scaling as per the golden mean universality class. This happens when the self-

coupling term vanishes and the cross-coupling term survives for each mode:

G1
22, G2

11 6= 0; G1
11 = G2

22 = 0 (6.22)

84



However, we find that in our system these criteria are not simultaneously satisfied. We cannot

find any point in our parameter space where both cross-coupling terms are sufficiently large

(to avoid finite size effects) and self-coupling terms are negligibly small. We illustrate this

in Fig. 6.7 where we have shown the variation of these matrix elements in the ρ-m plane for

a fixed b, b′. The top right and bottom left panels show the variation of the cross-coupling

co-efficients and it is clear from the color shades in these two panels that whenever one

cross-coupling term gets large, the other one becomes small. Therefore, the condition in Eq.

6.22 is not satisfied. Our simulation results for the structure functions confirm this reasoning.

We have determined the dynamical exponents in this case by measuring the variance of the

structure functions as a function of time (data not shown) and found that for both modes,

the variance scales as t0.57, whereas for golden mean an exponent ' 0.62 should be obtained.

In Fig. 6.8(a),(b) we show the scaling collapse of C11(x, t) and C22(x, t) and both modes show

good collapse with ∼ t0.57 scaling.

ρ

m

ρ

m

ρ

ρ

m
m

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0.8

1

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 6.7: We show a contour map of all the four diagonal elements of the mode-coupling matrices
in ρ, m plane for b = 0.1, b′ = −0.3. The top left and right panels are plots corresponding
to G1

11, G1
22 respectively, while the bottom panels correspond to G2

11(left) and G2
22(right). All

the four elements simultaneously assume very small magnitudes at the central light colour
zone and hence, it never so happens that G1

11, G2
22 ' 0 simultaneously with sufficiently

large non-zero values of G1
22, G2

11 to override the finite size effects severely affecting the
numerical observations for the dynamical exponent.
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Figure 6.8: We measure the dynamical structure factor S(x, t) at 3 different times for both the modes
corresponding to parameter values b = 0.1, b′ = −0.3, ρ = 0.67, m = 0.49 for N = 16000 in
the top panel. For this case, the matrix elements are: G1

11 = −0.067, G1
22 = −0.233, G2

11 =

−0.20, G2
22 = 0.082 and one expects the golden mean universality class (1/z = 0.618) for

both the modes. The estimate of G-matrices for these parameter values can be obtained
from mean field expressions for currents. From the scaling collapse of the data at different
times, we find an exponent 1/z = 0.57± 0.02 for both the modes. The bottom panel shows
dynamical structure factor S(x, t) for both the modes corresponding to parameter values
b = 0.1, b′ = −0.3, ρ = 0.85, m = 0.34 for N = 16000. For this case, one expects a 3/2-
Lévy scaling for the first mode and diffusive scaling for the second. The matrix elements
are: G1

11 = 0.0098, G1
22 = 0.739, G2

11 = −0.05, G2
22 = −0.07. From the collapse of structure

factors measured at different times, we find an exponent 1/z = 0.55± 0.01 for the first
mode, whereas the second mode is diffusive, with 1/z = 0.51± 0.01. These data have been
averaged over at least 105 independent histories.

6.3.5 3/2-Lévy and diffusive mode

The criteria for observing a 3/2-Lévy universality class for the mode α and diffusive class

for mode β is

Gα
αα = Gβ

αα = Gβ
ββ = 0, Gα

ββ 6= 0. (6.23)

We find that in our system this criterion is not satisfied for any parameter regime. Al-

though it is possible to find self-coupling term for both modes and cross-coupling term for
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the mode β simultaneously small, the cross-coupling term for mode α also tends to be small

in this case (see Fig. 6.7). As a result, we are not able to observe 3/2-Lévy mode in our

system. We show one example in Fig. 6.8(c), (d).

6.4 conclusion

We have studied disordered state dynamics of a coupled system of sliding particles on a fluc-

tuating landscape using the recently developed formalism of NLFH. In a large part of our

parameter space, product measure is not satisfied and exact current-density relationship is

not known. We restrict our study to those regions of the parameter space where spatial corre-

lations are weak and mean-field approximation can be used. We have also used an improved

approximation where short ranged correlations are self-consistently calculated and other cor-

relations are factorized. Using our approximate expression for currents we perform NLFH

calculation which predicts the existence of 5/3-Lévy, 3/2-Lévy, golden mean, modified KPZ

universality classes, apart from usual KPZ and diffusive classes. However, when we attempt

to verify these predictions from our numerical simulations, we encounter strong finite size

effects. We demonstrate that it is not enough to have a certain mode-coupling coefficient non-

zero, its magnitude needs to be significantly large in order for that term to dominate in the

scaling limit. This makes it difficult for us to observe golden mean or 3/2-Lévy universality

classes in our system, but we have been able to verify the existence of 5/3-Lévy universality

class. The case of modified KPZ universality class yields some interesting outcome which we

have not been able to explain. Instead of finding a scaling function different from Prähofer-

Spohn scaling function, we find that our data match well with Prähofer-Spohn function. Thus

our observation of modified KPZ cannot be distinguished from an usual KPZ universality

class. Note that in an earlier study [54] it was reported that for b = b′ = −0.5, where prod-

uct measure holds, one can observe only usual KPZ or diffusive universality class. Using

formalism of NLFH we find that even in this product measure point, one can have some ρ,

m values where one mode follows modified KPZ class and the other mode is diffusive. But

our numerical simulations show usual KPZ class, in agreement with [54]. To the best of our

knowledge, our study is the first step towards the extension of the formalism of NLFH for

systems where exact steady state measure is not known. It is of importance to have a gen-

eral understanding of the significant finite size effects for various different unconventional

universality classes. It would be intriguing to quantify how the finite size effects manifest

themselves for various non-product-measure systems that obey different dynamical rules.
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